Optics and Precision Engineering, Volume. 18, Issue 1, 266(2010)
Implementation of eliminating cloud and mist noise from remote sensing images
[1] [1] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE T. Pattern Anal., 1990,12(7):629-639.
[2] [2] RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithm [J]. Physical D,1992,60(3):259-268.
[3] [3] BABACAN S D, MOLINA R, KATSAGGELOS A K. Variational bayesian blind deconvolution using a total variation prior [J]. IEEE T. Imag Process., 2009,18(1):12-26.
[5] [5] BIOUCAS-DIAS J M. Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors [J]. IEEE T. Image Process.,2006,15(4):937-051.
[6] [6] LUISIER F, BLU T, UNSER M. A new sure approach to image denoising: Inter-scale orthonormal wavelet thresholding [J]. IEEE T.Image Process.,2007,16(3):593-606.
[9] [9] PROTTER M, ELAD M. Image sequence denoising via sparse and redundant representations [J]. IEEE T. Image Process., 2009,18(1):27-35.
[10] [10] WANG H, ORTEGA A. Rate-distortion optimized scheduling for redundant video representations [J]. IEEE T. Image Process., 2009,18(2):225-240.
[11] [11] BUADES A, COLL B, MOREL J M. A review of image denoising algorithms with a new one [J]. Multiscale Model. Simul, 2005,4(2):490-530.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Implementation of eliminating cloud and mist noise from remote sensing images[J]. Optics and Precision Engineering, 2010, 18(1): 266
Category:
Received: Feb. 13, 2009
Accepted: --
Published Online: Aug. 31, 2010
The Author Email: (shiwx@163.com)
CSTR:32186.14.