Infrared and Laser Engineering, Volume. 51, Issue 3, 20210253(2022)

High efficient activation function design for CNN model image classification task

Shengjie Du... Xiaofen Jia, Yourui Huang, Yongcun Guo and Baiting Zhao |Show fewer author(s)
Author Affiliations
  • School of Electrical and Information Engineering, Anhui University of Science and Technolog, Huainan 232000, China
  • show less
    Figures & Tables(12)
    (a) f1, (b) f2, (c) f3,(d) f4 functions and images
    Derivatives of (a)f1, (b) f2,(c) f3,(d) f4 and their graphs
    Test accuracy (a) and training time (b) of different activation functions using ResNet18 network on CIFAR10
    Test accuracy (a) and training time (b) of different activation functions using VGG16 network on CIFAR10
    Test accuracy (a) and training time (b) of different activation functions using ResNet18 network on CIFAR100
    Test accuracy (a) and training time (b) of different activation functions using VGG16 network on CIFAR100
    Test accuracy (a) and training time (b) of different activation functions using ResNet18 network on Fer2013
    Test accuracy (a) and training time (b) of different activation functions using VGG16 network on Fer2013
    • Table 1. Mathematical models of four activation functions

      View table
      View in Article

      Table 1. Mathematical models of four activation functions

      FunctionFunction model
      f1${f_1}(x) = \left\{ {x,x0x,x<0} \right.$
      f2${f_2}(x) = \left\{ {x,x023(x)32,x<0 } \right.$
      f3${f_3}(x) = \left\{ {x,x0x1x,x<0 } \right.$
      f4${f_4}(x) = \left\{ {x,x0ln1x,x<0} \right.$
    • Table 2. Four kinds of activation function derivative function model

      View table
      View in Article

      Table 2. Four kinds of activation function derivative function model

      Derived functionFunction model
      f1’ ${f_1}^\prime (x) = \left\{ {1,x01,x<0} \right.$
      f2’ ${f_2}^\prime (x) = \left\{ {1,x0(x),x<0} \right.$
      f3’ ${f_3}^\prime (x) = \left\{ {11(1x)2 } \right.,x0,x<0$
      f4’ ${f_4}^\prime (x) = \left\{ {1,x011x,x<0 } \right.$
    • Table 3. Performance of different activation functions on the ResNet18 network

      View table
      View in Article

      Table 3. Performance of different activation functions on the ResNet18 network

      Results Methods Datasets
      CIFAR10CIFAR100
      ACCT/h ACCT/h
      f193.11%1.33274.82%1.332
      f293.03%1.33574.27%1.335
      f393.66%1.29075.23%1.290
      f493.78%1.26275.87%1.262
      ReLU92.90%1.32573.68%1.325
    • Table 4. Performance of different activation functions on the VGG16 network

      View table
      View in Article

      Table 4. Performance of different activation functions on the VGG16 network

      Results Methods Datasets
      CIFAR10CIFAR100
      ACCT/h ACCT/h
      f191.31%1.22558.91%1.225
      f291.24%1.24858.35%1.248
      f391.86%1.24359.23%1.243
      f491.98%1.17559.95%1.175
      ReLU91.15%1.23856.24%1.238
    Tools

    Get Citation

    Copy Citation Text

    Shengjie Du, Xiaofen Jia, Yourui Huang, Yongcun Guo, Baiting Zhao. High efficient activation function design for CNN model image classification task[J]. Infrared and Laser Engineering, 2022, 51(3): 20210253

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Dec. 10, 2021

    Accepted: --

    Published Online: Apr. 8, 2022

    The Author Email:

    DOI:10.3788/IRLA20210253

    Topics