Acta Optica Sinica, Volume. 43, Issue 15, 1500001(2023)

Infrared Optoelectrical Detection Technology Based on Mercury Chalcogenide Colloidal Quantum Dots

Qun Hao1,2,3、*, Xin Tang1,2,3, and Menglu Chen1,2,3
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology,Beijing 100081, China
  • 3Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, Zhejiang, China
  • show less
    References(54)

    [1] Rogalski A[M]. Infrared detectors(2010).

    [2] Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 68, 2267-2336(2005).

    [3] Sargent E H. Infrared quantum dots[J]. Advanced Materials, 17, 515-522(2005).

    [4] Guyot-Sionnest P, Ackerman M M, Tang X. Colloidal quantum dots for infrared detection beyond silicon[J]. The Journal of Chemical Physics, 151, 060901(2019).

    [5] Tang X, Tang X B, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 3, 2396-2404(2016).

    [6] Zhang S, Hu Y, Hao Q. Advances of sensitive infrared detectors with HgTe colloidal quantum dots[J]. Coatings, 10, 760(2020).

    [7] Keuleyan S, Lhuillier E, Brajuskovic V et al. Mid-infrared HgTe colloidal quantum dot photodetectors[J]. Nature Photonics, 5, 489-493(2011).

    [8] Chen M L, Lan X Z, Hudson M H et al. Magnetoresistance of high mobility HgTe quantum dot films with controlled charging[J]. Journal of Materials Chemistry C, 10, 13771-13777(2022).

    [9] Melnychuk C, Guyot-Sionnest P. Slow auger relaxation in HgTe colloidal quantum dots[J]. The Journal of Physical Chemistry Letters, 9, 2208-2211(2018).

    [10] Ackerman M M, Chen M L, Guyot-Sionnest P. HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection[J]. Applied Physics Letters, 116, 083502(2020).

    [11] Tang X, Ackerman M M, Guyot-Sionnest P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices[J]. ACS Nano, 12, 7362-7370(2018).

    [12] Shen G H, Guyot-Sionnest P. HgTe/CdTe and HgSe/CdX (X = S, Se, and Te) core/shell mid-infrared quantum dots[J]. Chemistry of Materials, 31, 286-293(2019).

    [13] Keuleyan S, Lhuillier E, Guyot-Sionnest P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection[J]. Journal of the American Chemical Society, 133, 16422-16424(2011).

    [14] Lhuillier E, Keuleyan S, Zolotavin P et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors[J]. Advanced Materials, 25, 137-141(2013).

    [15] Keuleyan S, Kohler J, Guyot-Sionnest P. Photoluminescence of mid-infrared HgTe colloidal quantum dots[J]. The Journal of Physical Chemistry C, 118, 2749-2753(2014).

    [16] Guyot-Sionnest P, Roberts J A. Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots[J]. Applied Physics Letters, 107, 253104(2015).

    [17] Chen M L, Lan X Z, Tang X et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 6, 2358-2365(2019).

    [18] Shen G H, Chen M L, Guyot-Sionnest P. Synthesis of nonaggregating HgTe colloidal quantum dots and the emergence of air-stable n-doping[J]. The Journal of Physical Chemistry Letters, 8, 2224-2228(2017).

    [19] Hudson M H, Chen M L, Kamysbayev V et al. Conduction band fine structure in colloidal HgTe quantum dots[J]. ACS Nano, 12, 9397-9404(2018).

    [20] Lhuillier E, Keuleyan S, Guyot-Sionnest P. Optical properties of HgTe colloidal quantum dots[J]. Nanotechnology, 23, 175705(2012).

    [21] Ackerman M, Tang X, Guyot-Sionnest P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors[J]. ACS Nano, 12, 7264-7271(2018).

    [22] Tang X, Ackerman M M, Chen M L et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 13, 277-282(2019).

    [23] Zhang S, Chen M L, Mu G et al. Spray-stencil lithography enabled large-scale fabrication of multispectral colloidal quantum-dot infrared detectors[J]. Advanced Materials Technologies, 7, 2101132(2022).

    [24] Zhao P F, Qin T L, Mu G et al. Band-engineered dual-band visible and short-wave infrared photodetector with metal chalcogenide colloidal quantum dots[J]. Journal of Materials Chemistry C, 11, 2842-2850(2023).

    [25] Zhang S, Mu G, Cao J E et al. Single-/ fused-band dual-mode mid-infrared imaging with colloidal quantum-dot triple-junctions[J]. Photonics Research, 10, 1987-1995(2022).

    [26] Luo Y N, Zhang S, Tang X et al. Resonant cavity-enhanced colloidal quantum-dot dual-band infrared photodetectors[J]. Journal of Materials Chemistry C, 10, 8218-8225(2022).

    [27] Xue X M, Chen M L, Luo Y N et al. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction[J]. Light: Science & Applications, 12, 2(2023).

    [28] Deng Z Y, Jeong K S, Guyot-Sionnest P. Colloidal quantum dots intraband photodetectors[J]. ACS Nano, 8, 11707-11714(2014).

    [29] Jeong K S, Deng Z Y, Keuleyan S et al. Air-stable n-doped colloidal HgS quantum dots[J]. The Journal of Physical Chemistry Letters, 5, 1139-1143(2014).

    [30] Shen G H, Guyot-Sionnest P. HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon[J]. The Journal of Physical Chemistry C, 120, 11744-11753(2016).

    [31] Robin A, Livache C, Ithurria S et al. Surface control of doping in self-doped nanocrystals[J]. ACS Applied Materials & Interfaces, 8, 27122-27128(2016).

    [32] Martinez B, Livache C, Notemgnou Mouafo L D et al. HgSe self-doped nanocrystals as a platform to investigate the effects of vanishing confinement[J]. ACS Applied Materials & Interfaces, 9, 36173-36180(2017).

    [33] Martinez B, Livache C, Meriggio E et al. Polyoxometalate as control agent for the doping in HgSe self-doped nanocrystals[J]. The Journal of Physical Chemistry C, 122, 26680-26685(2018).

    [34] Livache C, Martinez B, Goubet N et al. A colloidal quantum dot infrared photodetector and its use for intraband detection[J]. Nature Communications, 10, 2125(2019).

    [35] Khalili A, Weis M, Mizrahi S G et al. Guided-mode resonator coupled with nanocrystal intraband absorption[J]. ACS Photonics, 9, 985-993(2022).

    [36] Chen M L, Shen G H, Guyot-Sionnest P. State-resolved mobility of 1 cm2/(Vs) with HgSe quantum dot films[J]. The Journal of Physical Chemistry Letters, 11, 2303-2307(2020).

    [37] Chen M L, Shen G H, Guyot-Sionnest P. Size distribution effects on mobility and intraband gap of HgSe quantum dots[J]. The Journal of Physical Chemistry C, 124, 16216-16221(2020).

    [38] Chen M L, Hao Q, Luo Y N et al. Mid-infrared intraband photodetector via high carrier mobility HgSe colloidal quantum dots[J]. ACS Nano, 16, 11027-11035(2022).

    [39] Tang X, Wu G F, Lai K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared[J]. Journal of Materials Chemistry C, 5, 362-369(2017).

    [40] Tachibana H, Aizawa N, Hidaka Y et al. Tunable full-color electroluminescence from all-organic optical upconversion devices by near-infrared sensing[J]. ACS Photonics, 4, 223-227(2017).

    [41] Li N, Lan Z J, Lau Y S et al. SWIR photodetection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction[J]. Advanced Science, 7, 2000444(2020).

    [42] Ban D, Han S, Lu Z H et al. Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector[J]. Applied Physics Letters, 90, 093108(2007).

    [43] Yeddu V, Seo G, Cruciani F et al. Low-band-gap polymer-based infrared-to-visible upconversion organic light-emitting diodes with infrared sensitivity up to 1.1 μm[J]. ACS Photonics, 6, 2368-2374(2019).

    [44] Chen J, Tao J C, Ban D Y et al. Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging[J]. Advanced Materials, 24, 3138-3142(2012).

    [45] Liu H C, Li J, Wasilewski Z R et al. Integrated quantum well intersub-band photodetector and light emitting diode[J]. Electronics Letters, 31, 832-833(1995).

    [46] Strassel K, Kaiser A, Jenatsch S et al. Squaraine dye for a visibly transparent all-organic optical upconversion device with sensitivity at 1000 nm[J]. ACS Applied Materials & Interfaces, 10, 11063-11069(2018).

    [47] Yu B H, Cheng Y H, Li M L et al. Sub-band gap turn-on near-infrared-to-visible up-conversion device enabled by an organic–inorganic hybrid perovskite photovoltaic absorber[J]. ACS Applied Materials & Interfaces, 10, 15920-15925(2018).

    [48] Yang D Z, Zhou X K, Ma D G et al. Near infrared to visible light organic up-conversion devices with photon-to-photon conversion efficiency approaching 30%[J]. Materials Horizons, 5, 874-882(2018).

    [49] Mu G, Rao T Y, Zhang S et al. Ultrasensitive colloidal quantum-dot upconverters for extended short-wave infrared[J]. ACS Applied Materials & Interfaces, 14, 45553-45561(2022).

    [50] Ciani A J, Pimpinella R E, Grein C H et al. Colloidal quantum dots for low-cost MWIR imaging[J]. Proceedings of SPIE, 9819, 981919(2016).

    [51] Buurma C, Pimpinella R E, Ciani A J et al. MWIR imaging with low cost colloidal quantum dot films[J]. Proceedings of SPIE, 9933, 993303(2016).

    [52] Gréboval C, Darson D, Parahyba V et al. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging[J]. Nanoscale, 14, 9359-9368(2022).

    [53] Zhang S, Bi C, Qin T L et al. Wafer-scale fabrication of CMOS-compatible trapping-mode infrared imagers with colloidal quantum dots[J]. ACS Photonics, 10, 673-682(2023).

    [54] Zhang S, Bi C, Tan Y M et al. Direct optical lithography enabled multispectral colloidal quantum-dot imagers from ultraviolet to short-wave infrared[J]. ACS Nano, 16, 18822-18829(2022).

    Tools

    Get Citation

    Copy Citation Text

    Qun Hao, Xin Tang, Menglu Chen. Infrared Optoelectrical Detection Technology Based on Mercury Chalcogenide Colloidal Quantum Dots[J]. Acta Optica Sinica, 2023, 43(15): 1500001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 10, 2023

    Accepted: Jul. 11, 2023

    Published Online: Aug. 15, 2023

    The Author Email: Hao Qun (qhao@bit.edu.cn)

    DOI:10.3788/AOS230963

    Topics