Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2738(2024)
Progress on Alumina Ceramic Continuous Fibers
[1] [1] MATEEN T, FAISAL H, AFZAAL A. Overview of NextelTM based structures for space applications [J]. J Space Technol Sci, 2011, 1(1): 88–94.
[2] [2] COX B N, ZOK F W. Advances in ceramic composites reinforced by continuous fibers[J]. Curr Opin Solid State Mater Sci, 1996, 1(5): 666–673.
[3] [3] BANSAL N P. Handbook of Ceramic Composites[M]. Boston, MA: Springer US, 2005.
[4] [4] KRENKEL W. Ceramic matrix composites: fiber reinforced ceramics and their applications[M]. Weinheim: Wiley-VCH, 2008.
[5] [5] MICHALSKE T A, HELLMANN J R. Strength and toughness of continuous-alumina-fiber-reinforced glass-matrix composites[J]. J Am Ceram Soc, 1988, 71(9): 725–731.
[6] [6] KAYA C, GU X, AL-DAWERY I, et al. Microstructural development of woven mullite fibre-reinforced mullite ceramic matrix composites by infiltration processing[J]. Sci Technol Adv Mater, 2002, 3(1): 35–44.
[7] [7] RADSICK T, SARUHAN B, SCHNEIDER H. Damage tolerant oxide/oxide fiber laminate composites[J]. J Eur Ceram Soc, 2000, 20(5): 545–550.
[8] [8] ALLAN R H, MICHAEL F G. High temperature properties of three Nextel ceramic fibers [C]//32nd International SAMPE Symposium, California, USA, 1987, 4: 6–9.
[9] [9] CHAWLA N, KERR M, CHAWLA K K. Monotonic and cyclic fatigue behavior of high-performance ceramic fibers[J]. J Am Ceram Soc, 2005, 88(1): 101–108.
[10] [10] TOWATA A, HWANG H J, YASUOKA M, et al. Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by sol–gel method[J]. Compos Part A Appl Sci Manuf, 2001, 32(8): 1127–1131.
[11] [11] DENKI KAGAKU K K. Process for continuous polycrystalline mullite fiber[P]. JP Patent, 260868-A26. 1985–06–03.
[12] [12] KITAOKA S, KAWASHIMA N, KOMATSUBARA Y, et al. Improved filtration performance of continuous alumina-fiber-reinforced mullite composites for hot-gas cleaning[J]. J Am Ceram Soc, 2005, 88(1): 45–50.
[14] [14] BHATT R. Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites[J]. NASA Tech Memo, 1981: 1–18.
[15] [15] ALMEIDA R S M, TUSHTEV K, CLAU? B, et al. Tensile and creep performance of a novel mullite fiber at high temperatures[J]. Compos Part A Appl Sci Manuf, 2015, 76: 37–43.
[16] [16] ALMEIDA R S M, BERGMüLLER E L, LüHRS H, et al. Thermal exposure effects on the long-term behavior of a mullite fiber at high temperature[J]. J Am Ceram Soc, 2017, 100(9): 4101–4109.
[17] [17] BERGER M H, BUNSELL A R. 1.9 oxide fibers[M]//Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018: 218–242.
[18] [18] TUSHTEV K, ALMEIDA R S M. Comprehensive composite materials II[M]. Amsterdam: Elsevier, 2018: 131–157.
[19] [19] BUNSELL A R. Handbook of tensile properties of textile and technical fibres[M]. Oxford: Woodhead Publishing, 2009.
[21] [21] NOURBAKHSH S, LIANG F L, MARGOLIN H. Characterization of a zirconia toughened alumina fibre, PRD-166[J]. J Mater Sci Lett, 1989, 8(11): 1252–1254.
[22] [22] KOBA K, UTSUNOMIYA T, IWANAGA K, et al. Continuous process for producing long α-alumina fibers[P]. US patent, 4812271. 1989–03–14.
[25] [25] EMIG G, WIRTH R, ZIMMERMANN-CHOPIN R. Sol/gel-based precursors for manufacturing refractory oxide fibres[J]. J Mater Sci, 1994, 29(17): 4559–4566.
[28] [28] OKAMURA K. Ceramic fibres from polymer precursors[J]. Composites, 1987, 18(2): 107–120.
[29] [29] BUNSELL A R. Oxide fibers for high-temperature reinforcement and insulation[J]. JOM, 2005, 57(2): 48–51.
[31] [31] PANDA P K, RAMAKRISHNA S. Electrospinning of alumina nanofibers using different precursors[J]. J Mater Sci, 2007, 42(6): 2189–2193.
[34] [34] TRIPOL’SKAYA T A, KOLYADINTSEVA L V, MEL’NIK E A, et al. On the stability of Al13 Keggin cation in aqueous hydrogen peroxide solutions[J]. Russ J Inorg Chem, 2017, 62(11): 1488–1494.
[42] [42] CHIOU Y H, TSAI M T, SHIH H C. The preparation of alumina fibre by sol-gel processing[J]. J Mater Sci, 1994, 29(9): 2378–2388.
[43] [43] VENKATESH R, RAMANAN S R. Influence of processing variables on the microstructure of sol–gel spun alumina fibres[J]. Mater Lett, 2002, 55(3): 189–195.
[46] [46] LIU Y, ZHANG Z F, HALLORAN J, et al. Yttrium aluminum garnet fibers from metalloorganic precursors[J]. J Am Ceram Soc, 1998, 81(3): 629–645.
[47] [47] WU C Z, LIU Q, CHEN R, et al. Mechanism of grain refinement and growth for the continuous alumina fibers by MgO addition[J]. Ceram Int, 2023, 49(5): 8565–8575.
[48] [48] MA Y Z, LIU H T, WU C Z, et al. Preparation of high-strength alumina-zirconia fibers by the sol-gel method combined with two-step sintering processes[J]. Ceram Int, 2024, 50(2): 4125–4135.
[49] [49] JOHNSON D D. Nextel 312 ceramic fiber from 3M[J]. J Coat Fabr, 1981, 10(4): 282–296.
[51] [51] SCHMüCKER M, FLUCHT F, SCHNEIDER H. High temperature behaviour of polycrystalline aluminosilicate fibres with mullite bulk composition. I. Microstructure and strength properties[J]. J Eur Ceram Soc, 1996, 16(2): 281–285.
[53] [53] PETRY M D, MAH T I. Effect of thermal exposures on the strengths of nextel? 550 and 720 filaments[J]. J Am Ceram Soc, 1999, 82(10): 2801–2807.
[55] [55] LAVASTE V, BERGER M H, BUNSELL A R, et al. Microstructure and mechanical characteristics of alpha-alumina-based fibres[J]. J Mater Sci, 1995, 30(17): 4215–4225.
[56] [56] HAY R S, FAIR G E, TIDBALL T. Fiber strength after grain growth in nextel? 610 alumina fiber[J]. J Am Ceram Soc, 2015, 98(6): 1907–1914.
[58] [58] DELéGLISE F, BERGER M H, JEULIN D, et al. Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre[J]. J Eur Ceram Soc, 2001, 21(5): 569–580.
[59] [59] POULON-QUINTIN A, BERGER M H, BUNSELL A R. Mechanical and microstructural characterisation of Nextel 650 alumina–zirconia fibres[J]. J Eur Ceram Soc, 2004, 24(9): 2769–2783.
[64] [64] SCHMüCKER M, FLUCHT F, MECHNICH P. Degradation of oxide fibers by thermal overload and environmental effects[J]. Mater Sci Eng A, 2012, 557: 10–16.
[66] [66] HAY R S, ARMANI C J, RUGGLES-WRENN M B, et al. Creep mechanisms and microstructure evolution of Nextel? 610 fiber in air and steam[J]. J Eur Ceram Soc, 2014, 34(10): 2413–2426.
[67] [67] WILSON D M, LIEDER S L, LUENEBURG D C. Microstructure and high temperature properties of nextel 720 fibers[M]//Proceedings of the 19th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures—B: Ceramic Engineering and Science Proceedings, Volume 16, Issue 5. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 1005–1014.
[68] [68] ARMANI C J, RUGGLES-WRENN M B, HAY R S, et al. Creep and microstructure of Nextel? 720 fiber at elevated temperature in air and in steam[J]. Acta Mater, 2013, 61(16): 6114–6124.
[69] [69] BUNSELL A R, BERGER M H. Fine diameter ceramic fibres[J]. J Eur Ceram Soc, 2000, 20(13): 2249–2260.
[73] [73] ROMINE J C. New High-temperature Ceramic Fiber[J]. Ceram. Eng. Sci Proc, 1987, 8(7/8): 755–758.
[77] [77] ZHU C X, CAO F, XIANG Y, et al. Effects of sintering temperature on mechanical properties of alumina fiber reinforced alumina matrix composites[J]. J Sol Gel Sci Technol, 2020, 93(1): 185–192.
[78] [78] TANIMOTO Y, NEMOTO K. Development of Al2O3 fiber-reinforced Al2O3-based ceramics[J]. Dent Mater J, 2004, 23(3): 297–304.
[80] [80] ZOK F W. Fracture and fatigue of continuous fiber-reinforced metal matrix composites[M]//Comprehensive Composite Materials. Amsterdam: Elsevier, 2000: 189–220.
[82] [82] DEVE H E, MCCULLOUGH C. Continuous-fiber reinforced composites: A new generation[J]. JOM, 1995, 47(7): 33–37.
[84] [84] 3M Center, Aluminum Conductor Composite Reinforced Technical Notebook. Conductor and Accessory Testing. [EB/OL]. [2024–03–01]. http://multimedia.3m.com
Get Citation
Copy Citation Text
JIAO Xiuling, CHEN Dairong. Progress on Alumina Ceramic Continuous Fibers[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2738
Category:
Received: Mar. 14, 2024
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Dairong CHEN (cdr@sdu.edu.cn)