Acta Optica Sinica, Volume. 42, Issue 17, 1726001(2022)

Influence of Polarization State on Identification for Topological Charges of Vortex Beam

Hao Xing1, Qing Luo1, He Cai1, Lingfei Xu2, Guofei An1, Jiao Yang1, Ruina Fang1, Weijiang Wang1, Yun Huang3, Tianrong Ren2, and You Wang1,3、*
Author Affiliations
  • 1Southwest Institute of Technical Physics, Chengdu 610041, Sichuan, China
  • 2Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
  • 3School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • show less
    References(37)

    [1] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [2] Simpson N B, Allen L, Padgett M J. Optical tweezers and optical spanners with Laguerre-Gaussian modes[J]. Journal of Modern Optics, 43, 2485-2491(1996).

    [3] Simpson N B, Dholakia K, Allen L et al. Mechanical equivalence of spin and optical spanner[J]. Physical Review Letter, 113, 263901(2014).

    [4] Jesacher A, Fürhapter S, Bernet S et al. Size selective trapping with optical "cogwheel" tweezers[J]. Optics Express, 12, 4129-4135(2004).

    [5] Simpson N B, McGloin D, Dholakia K et al. Optical tweezers with increased axial trapping efficiency[J]. Journal of Modern Optics, 45, 1943-1949(1998).

    [6] Tao S H, Yuan X C, Lin J et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 100, 043105(2006).

    [7] Xie X S, Chen Y Z, Yang K et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 113, 263901(2014).

    [8] Tong Z S, Korotkova O. Beyond the classical Rayleigh limit with twisted light[J]. Optics Letters, 37, 2595-2597(2012).

    [9] Li L L, Li F. Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography[J]. Physical Review E, 88, 033205(2013).

    [10] Lin J, Yuan X C, Tao S H et al. Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states[J]. Applied Optics, 46, 4680-4685(2007).

    [11] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [12] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [13] Yue Y, Huang H, Ahmed N et al. Reconfigurable switching of orbital-angular-momentum-based free-space data channels[J]. Optics Letters, 38, 5118-5121(2013).

    [14] Ma Z Y, Chen K, Zhang M M et al. Propagation characteristics of Laguerre-Gaussian power-exponent- phase-vortex beams[J]. Acta Optica Sinica, 42, 0526001(2022).

    [15] Chen K, Ma Z Y, Zhang M M et al. The tight-focusing properties of radially polarized symmetrical power-exponent-phase vortex beam[J]. Journal of Optics, 24, 055602(2022).

    [16] Berkhout G C G, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects[J]. Physical Review Letters, 101, 100801(2008).

    [17] Mazilu M, Mourka A, Vettenburg T et al. Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum[J]. Applied Physics Letters, 100, 231115(2012).

    [18] Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).

    [19] Ferreira Q S, Jesus-Silva A J, Fonseca E J S et al. Fraunhofer diffraction of light with orbital angular momentum by a slit[J]. Optics Letters, 36, 3106-3108(2011).

    [20] D′Errico A, D′Amelio R, Piccirillo B et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams[J]. Optica, 4, 1350-1357(2017).

    [21] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [22] Kaiser T, Flamm D, Schröter S et al. Complete modal decomposition for optical fibers using CGH-based correlation filters[J]. Optics Express, 17, 9347-9356(2009).

    [23] Malik M, Mirhosseini M, Lavery M P J et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector[J]. Nature Communications, 5, 3115(2014).

    [24] Vasnetsov M V, Torres J P, Petrov D V et al. Observation of the orbital angular momentum spectrum of a light beam[J]. Optics Letters, 28, 2285-2287(2003).

    [25] Courtial J, Robertson D A, Dholakia K et al. Rotational frequency shift of a light beam[J]. Physical Review Letters, 81, 4828-4830(1998).

    [26] Lavery M P J, Dudley A, Forbes A et al. Robust interferometer for the routing of light beams carrying orbital angular momentum[J]. New Journal of Physics, 13, 093014(2011).

    [27] Mirhosseini M, Malik M, Shi Z M et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 2781(2013).

    [28] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [29] Gruneisen M T, Dymale R C, Stoltenberg K E et al. Optical vortex discrimination with a transmission volume hologram[J]. New Journal of Physics, 13, 083030(2011).

    [30] Ke X Z, Chen J, Lü H. Study of double-slit interference experiment on the orbital angular momentum of LG beam[J]. Scientia Sinica (Physica, 42, 996-1002(2012).

    [31] Zhou H L, Shi L, Zhang X L et al. Dynamic interferometry measurement of orbital angular momentum of light[J]. Optics Letters, 39, 6058-6061(2014).

    [32] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 7, 40781(2017).

    [33] Jiang X H, Wang A T, Yao J N et al. Measuring high-order multiple vortex beams with fork-shaped grating[J]. Optik, 257, 168742(2022).

    [34] Doster T, Watnik A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 56, 3386-3396(2017).

    [35] Cao F L, Pu T C, Xie C Q. Superposition of two fractional optical vortices and the orbital angular momentum measurement by a deep-learning method[J]. Applied Optics, 60, 11134-11143(2021).

    [36] Ye Y E, Li J Y, Cao M et al. Accuracy recognition of orbital angular momentum of dual-mode vortex beams[J]. Laser & Optoelectronics Progress, 58, 1811021(2021).

    [37] Bu J, Zhang L C, Dou X J et al. Generation and application of optical vortices with arbitrary topological charges[J]. Infrared and Laser Engineering, 46, 0634001(2017).

    Tools

    Get Citation

    Copy Citation Text

    Hao Xing, Qing Luo, He Cai, Lingfei Xu, Guofei An, Jiao Yang, Ruina Fang, Weijiang Wang, Yun Huang, Tianrong Ren, You Wang. Influence of Polarization State on Identification for Topological Charges of Vortex Beam[J]. Acta Optica Sinica, 2022, 42(17): 1726001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Jun. 10, 2022

    Accepted: Jul. 28, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Wang You (youwang_2007@aliyun.com)

    DOI:10.3788/AOS202242.1726001

    Topics