Optics and Precision Engineering, Volume. 30, Issue 18, 2167(2022)
Application of spectral differential strategy in diffusion approximation model and simplified spherical harmonic approximation model
[1] YIN L, WANG K, TONG T et al. Adaptive grouping block sparse Bayesian learning method for accurate and robust reconstruction in bioluminescence tomography[J]. IEEE Transactions on Bio-Medical Engineering, 68, 3388-3398(2021).
[2] WANG G, LI Y, JIANG M. Uniqueness theorems in bioluminescence tomography[J]. Medical Physics, 31, 2289-2299(2004).
[3] GUO H B, YU J J, HU Z H et al. A hybrid clustering algorithm for multiple-source resolving in bioluminescence tomography[J]. Journal of Biophotonics, 11(2018).
[4] YIN L, WANG K, TONG T et al. Improved block sparse Bayesian learning method using K-nearest neighbor strategy for accurate tumor morphology reconstruction in bioluminescence tomography[J]. IEEE Transactions on Bio-Medical Engineering, 67, 2023-2032(2020).
[5] FENG J C, JIA K B, LI Z et al. Bayesian sparse-based reconstruction in bioluminescence tomography improves localization accuracy and reduces computational time[J]. Journal of Biophotonics, 11(2018).
[6] YU J J, ZHANG B, IORDACHITA I I et al. Systematic study of target localization for bioluminescence tomography guided radiation therapy[J]. Medical Physics, 43, 2619(2016).
[7] TARVAINEN T, VAUHKONEN M, KOLEHMAINEN V et al. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions[J]. Physics in Medicine and Biology, 50, 4913-4930(2005).
[8] CONG W X, WANG G, KUMAR D et al. Practical reconstruction method for bioluminescence tomography[J]. Optics Express, 13, 6756-6771(2005).
[9] WANG L, ZHU W T, ZHANG Y et al. Harnessing the power of hybrid light propagation model for three-dimensional optical imaging in cancer detection[J]. Frontiers in Oncology, 11, 750764(2021).
[10] KLOSE A D, LARSEN E W. Light transport in biological tissue based on the simplified spherical harmonics equations[J]. Journal of Computational Physics, 220, 441-470(2006).
[11] YANG D F, YAN C G, YANG L et al. An alternative reconstruction framework with optimal permission source region for bioluminescence tomography[J]. Optics Communications, 427, 112-122(2018).
[12] [12] 12金晨, 郭红波, 侯榆青, 等. 基于变量分离近似稀疏重构和简化球谐近似的生物发光断层成像[J]. 光学学报, 2014, 34(6): 197-205. doi: 10.3788/aos201434.0617001JINC, GUOH B, HOUY Q, et al. Bioluminescence tomography reconstruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation[J]. Acta Optica Sinica, 2014, 34(6): 197-205.(in Chinese). doi: 10.3788/aos201434.0617001
[13] CHEN X L, SUN F F, YANG D F et al. Hybrid simplified spherical harmonics with diffusion equation for light propagation in tissues[J]. Physics in Medicine and Biology, 60, 6305-6322(2015).
[14] WANG L, CAO X, REN Q Y et al. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: simulation demonstration[J]. Journal of Applied Physics, 123, 184701(2018).
[15] QIN C H, ZHU S P, FENG J C et al. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method[J]. Journal of Biophotonics, 4, 824-839(2011).
[16] [16] 16侯榆青, 张文元, 王晓东, 等. 结合流形正则和变量分离近似稀疏重构的荧光分子断层成像[J]. 光学 精密工程, 2018, 26(10): 2592-2604. doi: 10.3788/ope.20182610.2592HOUY Q, ZHANGW Y, WANGX D, et al. Light source reconstruction method in fluorescence molecular tomography based on Laplacian manifold regularization and sparse reconstruction by separable approximation[J]. Opt. Precision Eng., 2018, 26(10): 2592-2604.(in Chinese). doi: 10.3788/ope.20182610.2592
[17] NASER M A, PATTERSON M S. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties[J]. Biomedical Optics Express, 1, 512-526(2010).
[18] ZHANG X Q, LU Y J, CHAN T. A novel sparsity reconstruction method from Poisson data for 3D bioluminescence tomography[J]. Journal of Scientific Computing, 50, 519-535(2012).
[19] [19] 19侯榆青, 曲璇, 张海波, 等. 采用快速贝叶斯匹配追踪的单视图X射线发光断层成像[J]. 光学 精密工程, 2017, 25(5): 1159-1170. doi: 10.3788/ope.20172505.1159HOUY Q, QUX, ZHANGH B, et al. Single-view XLCT imaging based on fast Bayesian matching pursuit[J]. Opt. Precision Eng., 2017, 25(5): 1159-1170.(in Chinese). doi: 10.3788/ope.20172505.1159
[20] LIU Y Q, CHU M X, GUO H B et al. Multispectral differential reconstruction strategy for bioluminescence tomography[J]. Frontiers in Oncology, 12, 768137(2022).
[21] GAO Y, WANG K, JIANG S X et al. Bioluminescence tomography based on Gaussian weighted Laplace prior regularization for
[22] WANG L, CAO H H, CAO X et al. Adaptively hybrid 3rd simplified spherical harmonics with diffusion equation-based multispectral cerenkov luminescence tomography[J]. IEEE Access, 7, 160779-160785(2019).
[23] GUO H B, HU Z H, HE X W et al. Non-convex sparse regularization approach framework for high multiple-source resolution in Cerenkov luminescence tomography[J]. Optics Express, 25, 28068(2017).
[24] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2, 183-202(2009).
[25] ALEXANDRAKIS G, RANNOU F R, CHATZIIOANNOU A F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study[J]. Physics in Medicine and Biology, 50, 4225-4241(2005).
[26] YAO R Y, INTES X, FANG Q Q. Generalized mesh-based Monte Carlo for wide-field illumination and detection via mesh retessellation[J]. Biomedical Optics Express, 7, 171-184(2015).
Get Citation
Copy Citation Text
Yanqiu LIU, Xiangong HU, Heng ZHANG, Hongbo GUO, Xiaowei HE. Application of spectral differential strategy in diffusion approximation model and simplified spherical harmonic approximation model[J]. Optics and Precision Engineering, 2022, 30(18): 2167
Category: Modern Applied Optics
Received: Apr. 24, 2022
Accepted: --
Published Online: Oct. 27, 2022
The Author Email: Xiaowei HE (hexw@nwu.edu.cn)