Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 2131(2024)

Research Progress on Wave Absorption Properties of SiC Fiber and Its Composites

YU Tingyou... JIN Dan, YIN Hongfeng*, TANG Yun, REN Xiaohu, YUAN Hudie and SUN Kewei |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(107)

    [1] [1] LIU H G, WU S Q, YOU C Y, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding[J]. Carbon, 2021, 172: 569-596.

    [2] [2] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave material processing—a review[J]. AlChE J, 2012, 58(2): 330-363.

    [3] [3] KALLUMOTTAKKAL M, HUSSEIN M I, IQBAL M Z. Recent progress of 2D nanomaterials for application on microwave absorption: A comprehensive study[J]. Front Mater, 2021, 8: 633079.

    [4] [4] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733.

    [5] [5] XIANG Yu, YU Jinshan, WANG Honglei, et al. Bull Chin Ceram Soc, 2022, 41(9): 3234-3242.

    [6] [6] GOU Y Z, WANG H, JIAN K, et al. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres[J]. J Eur Ceram Soc, 2017, 37(2): 517-522.

    [7] [7] CAO Y, XIANG D P, LI H, et al. Rapid preparation of SiC fibers by spark plasma assisted vapor silicon infiltration[J]. J Alloys Compd, 2018, 740: 836-843.

    [8] [8] HAY R S. SiC fiber strength after low pO2 oxidation[J]. J Am Ceram Soc, 2018, 101(2): 831-844.

    [9] [9] HUANG Q, LEI G H, LIU R D, et al. Microstructure, hardness and modulus of carbon-ion-irradiated new SiC fiber (601-4)[J]. J Nucl Mater, 2018, 503: 91-97.

    [10] [10] WING B L, HALLORAN J W. Subsurface oxidation of boron nitride coatings on silicon carbide fibers in SiC/SiC ceramic matrix composites[J]. Ceram Int, 2018, 44(14): 17499-17505.

    [11] [11] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65: 124-139.

    [12] [12] HUANG Wei, WANG Xuan, LI Yongqing, et al. Mater Rep, 2023, 37(7): 15-25.

    [13] [13] YE Fang. Design, preparation and performance optimization of wave-absorbing SiCf/Si(B)CN composites[D]. Xi’an: Northwestern Polytechnical University, 2015.

    [14] [14] MO R, YIN X W, LI M X, et al. Relationship between microstructure and electromagnetic properties of SiC fibers[J]. J Am Ceram Soc, 2020, 103(8): 4352-4362.

    [15] [15] MUTO N, MIYAYAMA M, YANAGIDA H, et al. Infrared detection by Si—Ti—C—O fibers[J]. J Am Ceram Soc, 1990, 73(2): 443-445.

    [16] [16] YAMAMURA T, ISHIKAWA T, SHIBUYA M, et al. Development of a new continuous Si—Ti—C—O fibre using an organometallic polymer precursor[J]. J Mater Sci, 1988, 23(7): 2589-2594.

    [17] [17] SUZUKI K, KUMAGAWA K, KAMIYAMA T, et al. Characterization of the medium-range structure of Si—Al—C—O, Si—Zr—C—O and Si—Al—C Tyranno fibers by small angle X-ray scattering[J]. J Mater Sci, 2002, 37(5): 949-953.

    [18] [18] KAGAWA Y, IMAHASHI Y, IBA H, et al. Effect of electrical resistivity of Si-Ti-C-O fiber on electromagnetic wave penetration depth of short fiber-dispersed composites[J]. J Mater Sci Lett, 2003, 22(2): 159-161.

    [19] [19] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K. Production mechanism of polyzirconocarbo- silane using zirconium(IV)acetylacetonate and its conversion of the polymer into inorganic materials[J]. J Mater Sci, 1998, 33(1): 161-166.

    [20] [20] FISCHBACH D B, LEMOINE P M, YEN G V. Mechanical properties and structure of a new commercial SiC-type fibre (Tyranno)[J]. J Mater Sci, 1988, 23(3): 987-993.

    [21] [21] ZHAO Donglin, SHEN Zengmin. Aerosp Mater Technol, 2001, 31(1): 4-9.

    [22] [22] WANG Jun, SONG Yongcai, FENG Chunxiang. Chin J Mater Res, 1998, 12(4): 419-422.

    [23] [23] WANG Jun. Preparation and Electromagnetic Properties of Silicon Carbide Fibers Containing Transition Metals[D]. Changsha: National University of Defense Technology, 1997.

    [24] [24] WANG Jun, SONG Yongcai, FENG Chunxiang, et al. Natl Def Technol, 1997, 18(4): 57-60.

    [25] [25] WANG Jun, SONG Yongcai, FENG Chunxiang. J Funct Mater, 1997, 28(6): 619-622.

    [26] [26] WANG Yifei, FENG Chunxiang, SONG Yongcai. Aerosp Mater Technol, 1999, 29(1): 28-31.

    [27] [27] XU H Z, YAGI S, ASHOUR S, et al. A review on current nanofiber technologies: Electrospinning, centrifugal spinning, and electro-centrifugal spinning[J]. Macro Mater Eng, 2023, 308(3): 2200502.

    [28] [28] YU G S, LI T S, XU M, et al. Fabrication of nickel-YSZ cermet nanofibers via electrospinning[J]. J Alloys Compd, 2017, 693: 1214-1219.

    [29] [29] LI J, RUI J M, LI Y J, et al. Zr-doped SiOC ceramics fibers and the high-temperature thermal performance[J]. Int J Appl Ceram Technol, 2023, 20(4): 2438-2448.

    [30] [30] HOU Y, CHENG L F, ZHANG Y N, et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption[J]. ACS Appl Mater Interfaces, 2017, 9(8): 7265-7271.

    [31] [31] HOU Y, YANG Y, DENG C R, et al. Implications from broadband microwave absorption of metal-modified SiC fiber mats[J]. ACS Appl Mater Interfaces, 2020, 12(28): 31823-31829.

    [32] [32] YU Z J, LV X, MAO K W, et al. Role of in situ formed free carbon on electromagnetic absorption properties of polymer-derived SiC ceramics[J]. J Adv Ceram, 2020, 9(5): 617-628.

    [33] [33] LI F, DU H Z, CHEN T, et al. Dielectric properties and electromagnetic wave absorbing performance of single-source-precursor-derived carbon-rich NbC-SiC-C nanocomposites[J]. Int J Appl Ceram Technol, 2023, 20(2): 1090-1102.

    [34] [34] WANG P, CHENG L F, ZHANG L T. One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties[J]. Carbon, 2017, 125: 207-220.

    [35] [35] WANG P, CHENG L F, ZHANG Y N, et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics[J]. Compos Part A Appl Sci Manuf, 2018, 104: 68-80.

    [36] [36] HUO Y S, ZHAO K, XU Z L, et al. Electrospinning synthesis of SiC/Carbon hybrid nanofibers with satisfactory electromagnetic wave absorption performance[J]. J Alloys Compd, 2020, 815: 152458.

    [37] [37] ZHANG Y N, ZHAO Y J, CHEN Q, et al. Flexible SiC-CNTs hybrid fiber mats for tunable and broadband microwave absorption[J]. Ceram Int, 2021, 47(6): 8123-8132.

    [38] [38] WANG P, CHENG L F, ZHANG Y N, et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics[J]. Compos Part A Appl Sci Manuf, 2018, 104: 68-80.

    [39] [39] CHEN J H, LIU M, YANG T, et al. Improved microwave absorption performance of modified SiC in the 2-18 GHz frequency range[J]. CrystEngComm, 2017, 19(3): 519-527.

    [40] [40] LI Z C, YE F, CHENG L F, et al. Synthesis of Si—C—N aligned nanofibers with preeminent electromagnetic wave absorption in ultra-broad band[J]. J Mater Chem C, 2021, 9(47): 16966-16977.

    [41] [41] LI Y W, NIE H B, XUE S K, et al. Abnormal grain growth in iron-containing SiC fibers[J]. J Eur Ceram Soc, 2021, 41(4): 2306-2311.

    [42] [42] ZHANG B J, LIU Y, LI X L, et al. Closed-cell ZrO2/SiC-based composite nanofibers with efficient electromagnetic wave absorption and thermal insulation properties[J]. J Alloys Compd, 2022, 927: 167036.

    [43] [43] SHA J J, HINOKI T, KOHYAMA A. Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures[J]. J Mater Sci, 2007, 42(13): 5046-5056.

    [44] [44] XU Han, ZHANG Li, LU Xuechuan, et al. J Chin Ceram Soc, 2011, 39(8): 1260-1267.

    [45] [45] TIAN Y, LONG X, SHAO C W, et al. SiC nanograins stabilized Si—C—B—N fibers with ultrahigh-temperature resistance[J]. J Am Ceram Soc, 2023, 106(3): 1981-1992.

    [46] [46] LONG X, SHAO C W, WANG S S, et al. Nanochannel diffusion-controlled nitridation of polycarbosilanes for diversified SiCN fibers with interfacial gradient-SiCxNy phase and enhanced high-temperature stability[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12993-13002.

    [47] [47] WANG B W, LI H M, XU L M, et al. Fine-diameter microwave-absorbing SiC-based fiber[J]. RSC Adv, 2017, 7(20): 12126-12132.

    [48] [48] KUANG J L, JIANG P, RAN F Y, et al. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers[J]. J Alloys Compd, 2016, 687: 227-231.

    [49] [49] KUANG J L, XIAO T, ZHENG Q F, et al. Dielectric permittivity and microwave absorption properties of transition metal Ni and Mn doped SiC nanowires[J]. Ceram Int, 2020, 46(9): 12996-13002.

    [50] [50] CHEN S H, DONG X C, YAO X J, et al. Fabrication, microstructural evolution and excellent EMW absorbing properties of SiC fibers with high iron content[J]. J Mater Chem C, 2021, 9(38): 13509-13519.

    [51] [51] CHENG Haifeng, CHEN Zhaohui, LI Yongqing, et al. Aerosp Mater Technol, 1998, 28(2): 55-59.

    [53] [53] WEI Y S, YUE J L, TANG X Z, et al. Enhanced microwave-absorbing properties of FeCo magnetic film-functionalized silicon carbide fibers fabricated by a radio frequency magnetron method[J]. Ceram Int, 2017, 43(18): 16371-16375.

    [54] [54] GUO T, HUANG B, LI C G, et al. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region[J]. Ceram Int, 2021, 47(4): 5221-5226.

    [55] [55] HUANG B, HU H L, LIM S, et al. Gradient FeNi-SiO2 films on SiC fiber for enhanced microwave absorption performance[J]. J Alloys Compd, 2022, 897: 163204.

    [56] [56] XU J M, XIA L, LUO J H, et al. High-performance electromagnetic wave absorbing CNT/SiCf composites: Synthesis, tuning, and mechanism[J]. ACS Appl Mater Interfaces, 2020, 12(18): 20775-20784.

    [57] [57] WANG P, LI Z C, CHENG L F, et al. SiC/rGO core-shell nanowire as a lightweight, highly efficient gigahertz electromagnetic wave absorber[J]. ACS Appl Electron Mater, 2020, 2(2): 473-482.

    [58] [58] XU C, WU F, DUAN L Q, et al. Dual-interfacial polarization enhancement to design tunable microwave absorption nanofibers of SiC@C@PPy[J]. ACS Appl Electron Mater, 2020, 2(6): 1505-1513.

    [59] [59] ZHOU W, ZHANG Y T, LI Y, et al. In-situ synthesis of ternary layered Y3Si2C2 ceramic on silicon carbide fiber for enhanced electromagnetic wave absorption[J]. Ceram Int, 2022, 48(2): 1908-1915.

    [60] [60] ZOU Y J, HUANG X Z, FAN B H, et al. Constructing hierarchical Ti3SiC2 layer and carbon nanotubes on SiC fibers for enhanced electromagnetic wave absorption[J]. Ceram Int, 2023, 49(5): 8048-8057.

    [61] [61] YANG H T, LI Y R, LUO H, et al. In situ construction of TiC-Ti3SiC2 gradient hybrid interphase coated SiC fibers for suppression of specular reflection and non-specular scattering[J]. Materials, 2022, 16(1): 292.

    [62] [62] ZHAO Z X, DU Z J, HUANG X Z, et al. 1D-2D heterostructured silicon carbide fibers@WS2 with high efficiency and broad bandwidth for microwave absorption performance[J]. Ceram Int, 2023, 49(6): 9916-9923.

    [63] [63] LI H H, YUAN X Y, ZHAO P H, et al. A synergistic strategy for SiC/C nanofibers@MXene with core-sheath microstructure toward efficient electromagnetic wave absorption and photothermal conversion[J]. Appl Surf Sci, 2023, 613: 155998.

    [64] [64] YE F, ZHANG L T, YIN X W, et al. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating[J]. Appl Surf Sci, 2013, 270: 611-616.

    [65] [65] HUO Y S, TAN Y J, ZHAO K, et al. Enhanced electromagnetic wave absorption properties of Ni magnetic coating-functionalized SiC/C nanofibers synthesized by electrospinning and magnetron sputtering technology[J]. Chem Phys Lett, 2021, 763: 138230.

    [67] [67] WANG Yingde, FENG Chunxiang, WANG Juan, et al. Acta Mater Compos Sin, 2001, 18(1): 42-45.

    [68] [68] LIU Xuguang, WANG Yingde, XUE Jingen, et al. J Funct Mater, 2009, 40(5): 739-741.

    [69] [69] LIU Xuguang. Preparation and microwave-absorbing properties of non-circular section silicon carbide fibers[D]. Changsha: National University of Defense Technology, 2010.

    [70] [70] LIU Xuguang, WANG Yingde. J Solid Rocket Technol, 2008, 31(6): 642-645.

    [71] [71] LIU Xuguang, WANG Yingde, JIANG Yonggang, et al. Rare Met Mater Eng, 2008, 37(S1): 395-398.

    [72] [72] LIU X G, WANG Y D, WANG L, et al. Preparation and microwave electromagnetic properties of cross-shaped SiC fibers[J]. J Inorg Mater, 2010, 25(4): 441-444.

    [73] [73] YANG Lian, LI Yang, HONG Liu, et al. J Synth Cryst, 2016, 45(5): 1397-1403.

    [74] [74] ZHAO Lin. Nano absorbign materials prepared via electrospinning[D]. Beijing: Beijing University of Chemical Technology, 2016.

    [75] [75] ZHEN Xiali. Crosslinking kinetics of polyalumi-nocarbosilane fiber in ozone atmosphere and the formation mechanism of hollow SiC fiber[D]. Shanghai: Shanghai University, 2019.

    [76] [76] XIAO T, KUANG J L, PU H, et al. Hollow SiC microtube with multiple attenuation mechanisms for broadband electromagnetic wave absorption[J]. J Alloys Compd, 2021, 862: 158032.

    [77] [77] TIAN Q, WU N, WANG B, et al. Fabrication of hollow SiC ultrafine fibers by single-nozzle electrospinning for high-temperature thermal insulation application[J]. Mater Lett, 2019, 239: 109-112.

    [78] [78] ZHU B, CUI Y, LV D F, et al. Synthesis and electromagnetic wave absorption properties of peanut shell-like SiC fibers[J]. Mater Lett, 2020, 263: 127288.

    [79] [79] LAN X L, QIU Z C, YAN B, et al. Growing dendritic SiC on 1D SiC nanowire: Enhancement of electromagnetic wave absorption performance[J]. J Phys Chem Solids, 2020, 136: 109124.

    [80] [80] LI B B, MAO B X, HUANG H Q, et al. Synthesis and microwave absorption properties of bamboo-like β-SiC nanowires[J]. Int J Appl Ceram Technol, 2020, 17(4): 1869-1881.

    [81] [81] YE F, ZHANG L T, YIN X W, et al. Dielectric and electromagnetic wave absorbing properties of two types ofSiC fibres with different compositions[J]. J Mater Sci Technol, 2013, 29(1): 55-58.

    [82] [82] DING D H, LUO F, SHI Y M, et al. Influence of thermal oxidation on complex permittivity and microwave absorbing potential of KD-I SiC fiber fabrics[J]. J Eng Fibres Fabr, 2014, 9(2): 155892501400900.

    [83] [83] TAN E, KAGAWA Y, DERICIOGLU A F. Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range[J]. J Mater Sci, 2009, 44(5): 1172-1179.

    [84] [84] YANG Haitang, HUANG Xiaozhong. SiC fiber and ceramic composites[M]. Changsha: Central South University Press, 2020.

    [85] [85] LIU Haitao, CHENG Haifeng, WANG Jun, et al. Mater Rev, 2009, 23(19): 24-27.

    [86] [86] QIU Jingrong. Aerosp Mater Technol, 1990, 20(4): 59-63.

    [87] [87] XU Jiansheng, ZHOU Wancheng, LUO Fa, et al. Mater Rev, 2014, 28(9): 46-49.

    [88] [88] LIU Qiaomu, HUANG Shunzhou, HE Aijie. J Mater Eng, 2019, 47(2): 1-10.

    [89] [89] DU Kun, CHEN Qihao, MENG Xianlong, et al. J Propuls Technol, 2022, 43(2): 107-125.

    [90] [90] HUANG Z B, KANG W B, QING Y C, et al. Influences of SiCf content and length on the strength, toughness and dielectric properties of SiCf/LAS glass-ceramic composites[J]. Ceram Int, 2013, 39(3): 3135-3140.

    [91] [91] HAN T, LUO R Y, CUI G Y, et al. Effect of fibre directionality on the microwave absorption properties of 3D braided SiCf/SiC composites[J]. Ceram Int, 2019, 45(6): 7797-7803.

    [92] [92] WU H T, CHEN M W, WEI X, et al. Deposition of BN interphase coatings from B-trichloroborazine and its effects on the mechanical properties of SiC/SiC composites[J]. Appl Surf Sci, 2010, 257(4): 1276-1281.

    [93] [93] DING D H, SHI Y M, WU Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase[J]. Carbon, 2013, 60: 552-555.

    [94] [94] LIU H T, TIAN H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process[J]. J Eur Ceram Soc, 2012, 32(10): 2505-2512.

    [95] [95] MU Y, ZHOU W C, LUO F, et al. Effects of BN/SiC dual-layer interphase on mechanical and dielectric properties of SiCf/SiC composites[J]. Ceram Int, 2014, 40(2): 3411-3418.

    [96] [96] FAN Y T, YANG D, MEI H, et al. Tuning SiC nanowires interphase to improve the mechanical and electromagnetic wave absorption properties of SiCf/SiCnw/Si3N4 composites[J]. J Alloys Compd, 2022, 896: 163017.

    [97] [97] GAO H, LUO F. Effect of SiC interphase on the mechanical, high-temperature dielectric and high-temperature microwave absorption properties of the SiCf/SiC/Mu composites[J]. Ceram Int, 2022, 48(13): 18567-18578.

    [98] [98] GAO H, LUO F, NAN H Y, et al. Improved mechanical and microwave absorption properties of SiC fiber/mullite matrix composite using hybrid SiC/Ti3SiC2 fillers[J]. J Alloys Compd, 2019, 791: 51-59.

    [99] [99] WAN F, YAN J H, XU H M. Improved mechanical and high-temperature electromagnetic wave absorption properties of SiCf/BN/AlPO4 composites with absorber multiwalled carbon nanotubes[J]. Compos Interfaces, 2020: 1-18.

    [100] [100] DUAN S C, ZHU D M, ZHOU W C, et al. Mechanical and microwave absorption properties of Ti-filled SiCf/SiC composites via precursor infiltration and pyrolysis[J]. J Mater Sci Mater Electron, 2020, 31(3): 2634-2642.

    [101] [101] LI Huazhan. Preparation and microwave absorbing properties of silicon carbide fiber/epoxy resin composites[D].Xiamen: Xiamen University, 2015.

    [102] [102] ISHIKAWA T, ICHIKAWA H, IMAI Y, et al. Electromagnetic wave absorbers of silicon carbide fibers: US4507354[P]. 1985-03-26.

    [103] [103] HUANG Ke, FENG Bin, DENG Jinglan. Hi Tech Fiber Appl, 2010, 35(6): 54-58.

    [104] [104] CHOI J H, NAM Y W, JANG M S, et al. Characteristics of silicon carbide fiber-reinforced composite for microwave absorbing structures[J]. Compos Struct, 2018, 202: 290-295.

    [105] [105] YAN Haichao. Mod Econ Inf, 2020(12): 148-149.

    [106] [106] WANG H Y, ZHU D M. Design of radar absorbing structure using SiCf/epoxy composites for X band frequency range[J]. Ind Eng Chem Res, 2018, 57(6): 2139-2145.

    [107] [107] ZHENG W J, WEI B, YAO Z J, et al. Study on mechanical properties and X-band microwave absorption properties of ER/SiCp/SiCf ternary composites[J]. J Magn Magn Mater, 2021, 540: 168450.

    [108] [108] GUO K S, ZHANG W X, ZHANG S N, et al. Optimization of the microwave absorptivity of SiCf/Resin composites in the GHz range[J]. Ceram Int, 2021, 47(13): 18262-18273.

    [109] [109] LIU H T, CHENG H F, TIAN H. Design, preparation and microwave absorbing properties of resin matrix composites reinforced by SiC fibers with different electrical properties[J]. Mater Sci Eng B, 2014, 179: 17-24.

    Tools

    Get Citation

    Copy Citation Text

    YU Tingyou, JIN Dan, YIN Hongfeng, TANG Yun, REN Xiaohu, YUAN Hudie, SUN Kewei. Research Progress on Wave Absorption Properties of SiC Fiber and Its Composites[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2131

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 13, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Hongfeng YIN (yinhongfeng@xauat.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20230601

    Topics