Semiconductor Optoelectronics, Volume. 41, Issue 3, 336(2020)
Study on Balancing Gain and Refractive Index Change of Quantum Dot with Low Polarization Dependence
[1] [1] Li Q, Han J H, Ho C P, et al. Low-crosstalk, low-power Mach-Zehnder interferometer optical switch based on Ⅲ-Ⅴ/Si hybrid MOS phase shifter[C]// Optical Fiber Communication Conf. Optical Society of America, 2018.
[2] [2] Soganci I M, Tanemura T, Nakano Y. Integrated 1×8 optical phased-array switch with low polarization sensitivity for broadband optical packet switching[J]. IEEE Photonics J.,2009, 1(2): 80-87.
[3] [3] El-Saeed E M, El-Aziz A A, Fayed H A, et al. Optical logic gates based on semiconductor optical amplifier Mach-Zehnder interferometer: design and simulation[J]. Opt. Engin., 2016, 55(2): 025104.
[4] [4] Choudhury R V R. Simulation of varied Si waveguides to study FCA effect in TPA based optical logic gates[C]//Proc. IEEE 3rd International Conference on Control, Communication and Computing,2016.
[5] [5] Noorden A F A, Daud S, Ali J. Implication of plasma dispersion effect for controlling refractive index in micro resonator[C]// AIP Conf. Proceedings, 2017, 1824(1): 030001.
[6] [6] Peter E, Thomas A, Dhawan A, et al. Active microring based tunable optical power splitters[J]. Opt. Commun., 2016, 359: 311-315.
[7] [7] Kita T, Tamura N, Wada O, et al. Artificial control of optical gain polarization by stacking quantum dot layers[J]. Appl. Phys. Lett., 2006, 88(21): 211106.
[8] [8] Yasuoka N, Ebe H, Kawaguchi K, et al. Polarization-insensitive quantum dot semiconductor optical amplifiers using strain-controlled columnar quantum dots[J]. J. of Lightwave Technol., 2011, 30(1): 68-75.
[9] [9] Suwa M, Andachi T, Kaizu T, et al. Polarization characteristics of electroluminescence and net modal gain in highly stacked InAs/GaAs quantum-dot laser devices[J]. J. of Appl. Phys., 2016, 120(13): 134313.
[10] [10] Uskov A V, OReilly E P, Mcpeake D, et al. Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states[J]. Appl. Phys. Lett., 2004, 84(2): 272-274.
[11] [11] Lorke M, Jahnke F, Chow W W. Excitation dependences of gain and carrier-induced refractive index change in quantum-dot lasers[J]. Appl. Phys. Lett., 2007, 90(5): 051112.
[12] [12] Cakir B, Yakar Y, Ozmen A. Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential[J]. J. of Luminescence, 2012, 132(10): 2659-2641.
[13] [13] Miao Q Y, Yang Z Y, Dong J J, et al. Theoretical study of polarization dependence of carrier-induced refractive index change of quantum dot[J]. Opt. Express, 2018, 26(3): 2252-2260.
[15] [15] Kita T, Jayavel P, Wada O, et al. Polarization controlled edge emission from columnar InAs/GaAs self-assembled quantum dots[J]. Physica Status Solidi (C), 2003(4): 1137-1140.
[16] [16] Park S H, Ahn D, Lee Y T, et al. Electronic properties of InGaAs/GaAs strained coupled quantum dots modeled by eight-band k?p theory[J]. Japanese J. of Appl. Phys., 2003, 42(1R): 144.
[17] [17] Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers[J]. IEEE J. of Quantum Electronics, 1986, 22(9): 1915-1921.
[18] [18] Grosse P, Offermann V. Analysis of reflectance data using the Kramers-Kronig relations[J]. Appl. Phys. A, 1991, 52(2): 138-144.
[19] [19] Hegarty S P, Corbett B, McInerney J G, et al. Free-carrier effect on index change in 1.3μm quantum-dot lasers[J]. Electron. Lett., 2005, 41(7): 416-418.
[20] [20] Chuang S L. Physics of Photonic Devices[M]. New York:John Wiley & Sons, 2012.
Get Citation
Copy Citation Text
MIAO Qingyuan, WU Zihan. Study on Balancing Gain and Refractive Index Change of Quantum Dot with Low Polarization Dependence[J]. Semiconductor Optoelectronics, 2020, 41(3): 336
Category:
Received: Jan. 6, 2020
Accepted: --
Published Online: Jun. 18, 2020
The Author Email: Qingyuan MIAO (miaoqy@whu.edu.cn)