Semiconductor Optoelectronics, Volume. 41, Issue 5, 618(2020)

Review on The Methods of Preventing Catastrophic Optical Mirror Damage in High-power Diode Lasers

SONG Yue1...2, NING Yongqiang1,2,*, QIN Li1,2, CHEN Yongyi1,2, ZHANG Jinlong1,2, ZHANG Jun1,2, and WANG Lijun12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(39)

    [1] [1] Tomm J W, Ziegler M, Hempel M, et al. Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers[J]. Laser Photonics Rev., 2011, 5(3): 422-441.

    [2] [2] Kressel H, Mierop H. Catastrophic degradation in GaAs injection lasers[J]. J. Appl. Phys., 1967, 38(13): 5419-5421.

    [3] [3] Eliseev P G. Degradation of injection lasers[J]. J. Lumin., 1973, 7: 338-356.

    [4] [4] Henry C H, Petroff P M, Logan R A, et al. Catastrophic damage of AlxGa1-xAs double-heterostructure laser material[J]. J. Appl. Phys., 1979, 50(5): 3721-3732.

    [5] [5] Tang W C, Rosen H J, Vettiger P, et al. Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown[J]. Appl. Phys. Lett., 1991, 58(6): 557-559.

    [6] [6] Chen G, Tien C L. Facet heating of quantum well lasers[J]. J. Appl. Phys., 1993, 74(4): 2167-2174.

    [7] [7] Schatz R, Bethea C. Steady state model for facet heating to thermal runaway in semiconductor lasers[J]. J. Appl. Phys., 1994, 76(4): 2509-2521.

    [9] [9] Tomm J W, Hempel M, Krakowski M, et al. Mechanisms and kinetics of the catastrophic optical damage (COD) of high-power semiconductor lasers[C]// Photonics Society Summer Topical Meeting Series. IEEE, 2012: 51-52.

    [10] [10] Sandroff C J, Nottenburg R N, Bischoff J C, et al. Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation[J]. Appl. Phys. Lett., 1987, 51(1): 33-35.

    [11] [11] Carpenter M S, Melloch M, Lundstrom M S, et al. Effect of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs pn diodes[J]. Appl. Phys. Lett., 1988, 52(25): 2157-2159.

    [12] [12] Fan J F, Oigawa H, Nannichi Y. The effect of (NH4)2S treatment on the interface characteristics of GaAs MIS structures[J]. Jpn. J. of Appl. Phys., 1988, 27(7): L1331-L1333.

    [13] [13] Kawanishi H, Ohno H, Morimoto T, et al. Improvement of high-power characteristics of 780-nm AlGaAs laser diode by (NH4)2S facet treatment[C]// Proc. of SPIE-The International Society for Optical Engineering, 1990: 1219.

    [14] [14] Kamiyama S, Mori Y, Takahashi Y, et al. Improvement of catastrophic optical damage level of AlGaInP visible laser diodes by sulfur treatment[J]. Appl. Phys. Lett., 1991, 58(23): 2595-2597.

    [15] [15] Hou Xiaoyan, Chen Xiying, Li Zheshen, et al. Passivation of GaAs surface by sulfur glow discharge[J]. Appl. Phys. Lett., 1996, 69(10): 1429-1431.

    [16] [16] Lu E D, Zhang F P, Xu S H, et al. A sulfur passivation for GaAs surface by an organic molecular, CH3CSNH2 treatment[J]. Appl. Phys. Lett., 1996, 69(15): 2282-2284.

    [17] [17] Salesse A, Joullie A, Calas P, et al. Surface passivation of GaInAsSb photodiodes with thioacetamide[J]. Phys. Stat. Sol.(C), 2003, 4(4): 1508-1512.

    [19] [19] Broom R F, Gasser M, Harder C S, et al. Method for batch cleaving semiconductor wafers and coating cleaved facet: United States Patent, 5171717[P]. 1992-12-15.

    [20] [20] Chand N, Hamm R A. In-situ technique for cleaving crystals. United States Patent, 5773318[P]. 1998-06-30.

    [21] [21] Lindstrom L, Karsten V, Blixt P N, et al. Method to obtain contamination free laser mirrors and passivation of these: United States Patent, 6812152[P]. 2005-07-14.

    [22] [22] Syrbu A V, Yakovlev V P, Suruceanu G I, et al. ZnSe-facet-passivated InGaAs/InGaAsP/InGaP diode lasers of high CW power and ‘wallplug’ efficiency[C]// Proc. of IEEE Conf. on Lasers & Electro-optics, 1996, 32: 352-353.

    [23] [23] Mawst L J, Bhattacharya A, Nesnidal M, et al. MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers[J]. J. of Cryst. Growth, 1997, 170(1): 383-389.

    [24] [24] Ressel P, Erbert G, Beister G, et al. Simple but effective passivation process for the mirror facets of high-power semiconductor diode lasers[C]//Proc. of IEEE Conf. on Lasers & Electro-optics Europe, 2004: 145.

    [29] [29] Ladany I, Ettenberg M, Lockwood H F, et al. Al2O3 half-wave films for long-life CW lasers[J]. Appl. Phys. Lett., 1977, 30(2): 87-88.

    [30] [30] Kerps D. Suppression of side lobes in the far field of AlGaAs DH stripe lasers by a Te facet coating[J]. Appl. Phys. Lett., 1979, 35(5): 372-373.

    [31] [31] Tu L W, Schubert E F, Hong M, et al. In-vacuum cleaving and coating of semiconductor laser facets using thin silicon and a dielectric[J]. J. Appl. Phys., 1997, 80(11): 6448-6451.

    [32] [32] Lorch S. Optimization of process parameters for low-absorbing optical coatings fabricated by reactive ion-beam sputter deposition[J]. Annual Report 2004, Optoelectronics Department, University of Ulm.

    [33] [33] Charache G, Hostetler J, Jiang C L, et al. Laser facet passivation: United States Patent, 7687291[P]. 2006-03-27.

    [37] [37] Yonezu H, Ueno M, Kamejima T, et al. An AlGaAs window structure laser[J]. IEEE J. Quantum Electron, 1979, 15(8): 775-781.

    [38] [38] Botez D, Connolly J C. Nonabsorbing-mirror (NAM) CDH-LOC diode lasers[J]. Electron. Lett., 1984, 20(13): 530-532.

    [39] [39] Philippe C, Julia A, Virginie M, et al. Non absorbing mirrors for AlGaAs quantum well lasers by impurity-free interdiffusion[J]. Proc.of SPIE-The Inter. Society for Optical Engineering, 1999, 3628: 260-266.

    [40] [40] Yamamura S, Hanamaki Y, Kawasaki K, et al. A very low failure rate of COD free high power 0.98μm laser diode with the window structure[C]// Proc. of IEEE Optical Fiber Communication Conf., 2000.

    [41] [41] Walker C L, Bryce A C, Marsh J H. Improved catastrophic optical damage level from laser with nonabsorbing mirrors[J]. IEEE Photon. Technol. Lett., 2002, 14(10): 1394-1396.

    [44] [44] Naito H, Nagakura T, Torii K, et al. Long-term reliability of 915nm broad-area laser diodes under 20W CW operation[J]. IEEE Photon. Technol. Lett., 2015, 27(15): 1041-1135.

    [45] [45] Yun Y S, Kim S H, Ryu H Y, et al. InGaAs/GaAs quantum well intermixing using proton irradiation for non-absorbing mirror[J]. Curr. Appl. Phys., 2016, 16(9): 1005-1008.

    [46] [46] Shibutani T, Kume M, Hamada K, et al. A novel high-power laser structure with current-blocked regions near cavity facets[J]. IEEE J. Quantum Electron., 2003, 23(6): 760-764.

    [47] [47] Sagawa M, Hiramoto K. Advantages of InGaAsP separate confinement layer in 0.98mμm InGaAs/GaAs/InGaP strained DOW lasers for high power operation at high temperature[J]. Electron. Lett., 1992, 28(17): 1639-1640.

    [48] [48] Rinner F, Rogg J, Kelemen M T, et al. Facet temperature reduction by a current blocking layer at the front facets of high-power InGaAs/AlGaAs lasers[J]. J. Appl. Phys., 2003, 93(3): 1848-1850.

    Tools

    Get Citation

    Copy Citation Text

    SONG Yue, NING Yongqiang, QIN Li, CHEN Yongyi, ZHANG Jinlong, ZHANG Jun, WANG Lijun. Review on The Methods of Preventing Catastrophic Optical Mirror Damage in High-power Diode Lasers[J]. Semiconductor Optoelectronics, 2020, 41(5): 618

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2020

    Accepted: --

    Published Online: Jan. 19, 2021

    The Author Email: Yongqiang NING (ningyq@ciomp.ac.cn)

    DOI:10.16818/j.issn1001-5868.2020.05.003

    Topics