Journal of Synthetic Crystals, Volume. 49, Issue 3, 379(2020)
Recent Progress on Two-Dimensional Heterostructure Based Photodetectors
[1] [1] Li B, Xing T, Zhong M, et al. A Two-dimensional Fe-doped SnS2 magnetic semiconductor[J].Nature Communications,2017,8(1):1958.
[2] [2] Wang X, Li Y, Huang L, et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide[J].Journal of the American Chemical Society,2017,139(42):14976-14982.
[3] [3] Zhou Z, Long M, Pan L, et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs[J].ACS Nano,2018,12(12):12416-12423.
[4] [4] Yang J, Zhou Z, Fang J, et al. Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4[J].Applied Physics Letters, 2019,115(22):222101.
[5] [5] Zhong M, Xia Q, Pan L, et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black Arsenic[J].Advanced Functional Materials,2018,28(43):1802581.
[6] [6] Li J, Yang X, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays [J].Nature,2020, 579(7799):368-374.
[7] [7] Gu J, Chakraborty B, Khatoniar M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J].Nature Nanotechnology,2019,14(11):1024-1028.
[8] [8] Lin Z, Huang Y, Duan X. Van der Waals thin-film electronics[J].Nature Electronics,2019,2(9):378-388.
[9] [9] Bandurin D A, Svintsov D, Gayduchenko I, et al. Resonant terahertz detection using graphene plasmons [J].Nature Communications,2018,9(1): 5392.
[10] [10] Yin L, He P, Cheng R, et al. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices[J].Nature Communications,2019,10(1):4133.
[11] [11] Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[12] [12] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J].Nature Nanotechnology,2011,6(3):147-150.
[13] [13] Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J].Nature Photonics,2018,12(10):601-607.
[14] [14] Geim A K, Grigorieva I V. Van der Waals heterostructures[J].Nature,2013,499(7459): 419-425.
[15] [15] Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials [J].Nature,2019,567(7748): 323-333.
[16] [16] Huo N, Yang Y, Li J. Optoelectronics based on 2D TMDs and heterostructures[J].Journal of Semiconductors,2017,38(3):031002.
[17] [17] Hong X, Kim J, Shi S F, et al. Ultrafast charge transfer in atomically thin MoS2/WS2heterostructures [J].Nature Nanotechnology,2014,9(9): 682-686.
[18] [18] Hamm J M, Hess O. Two two-dimensional materials are better than one[J].Science,2013,340(6138):1298-1299.
[19] [19] Guo J, Li J, Liu C, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 mum[J].Light: Science & Applications,2020,9:29.
[20] [20] Kim K S, Ji Y J, Kim K H, et al. Ultrasensitive MoS2 photodetector by serial nano-bridge multi- heterojunction[J].Nature Communications,2019,10(1):4701.
[21] [21] Wu F, Li Q, Wang P, et al. High Efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region[J].Nature Communications,2019; 10(1):4663
[22] [22] Huang M, Li S, Zhang Z, et al. Multifunctional high-performance van der Waals heterostructures[J].Nature Nanotechnology,2017,12(12):1148-1154.
[23] [23] McManus D, Vranic S, Withers F, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures[J].Nature Nanotechnology,2017,12(4):343-350.
[24] [24] Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-timensional taterials by all-dry viscoelastic stamping[J].2D Materials, 2014,1(1):011002.
[25] [25] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures[J].Science, 2016; 353(6298):aac9439.
[26] [26] Purdie D G, Pugno N M,Taniguchi T, et al. Cleaning interfaces in layered materials heterostructures [J].Nature Communications, 2018,9(1):5387.
[27] [27] Gong Y, Lin J, Wang X, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J].Nature Materials, 2014, 13(12):1135-1142.
[28] [28] Li B, Huang L, Zhong M, Li Y, et al. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch[J].Advanced Electronic Materials,2016,2(11):1600298.
[29] [29] Lee S, Yang F, Suh J, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K[J].Nature Communications,2015,6:8573.
[30] [30] Masubuchi S, Morimoto M, Morikawa S, et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices[J].Nature Communications,2018,9(1):1413.
[31] [31] Cui Y, Li B, Li J, et al. Chemical vapor deposition growth of two-dimensional heterojunctions[J].Science China Physics, Mechanics & Astronomy,2017,61(1):016801.
[32] [32] Xiang R, Inoue1 T, Zheng Y, et al. One-dimensional Van der Waals heterostructures[J].Science,2020,367(6477):537-542.
[33] [33] Zhang Z, Chen P, Duan X, et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices[J].Science, 2017,357(6353):788-792.
[34] [34] Yang T, Zheng B, Wang Z, et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions[J].Nature Communications,2017,8(1):1906.
[35] [35] Huo N, Kang J, Wei Z, et al. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J].Advanced Functional Materials,2014,24(44):7025-7031.
[36] [36] Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts[J].Nano Letters,2013,13(1):100-105.
[37] [37] Mleczko M J, Yu A C, Smyth C M, et al. Contact engineering high-performance n-Type MoTe2 transistors [J].Nano Letters,2019,19(9):6352-6362.
[38] [38] Li Y, Huang L, Zhong M, et al. An efficient and low-cost photolithographic-pattern-transfer technique to fabricate electrode arrays for micro-/nanoelectronics[J].Advanced Materials Technologies,2016,1(1):1600001.
[39] [39] Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J].Nature,2018,557(7707):696-700.
[40] [40] Kim J, Park S, Jang H, et al. Highly Sensitive, Gate-tunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3heterostructure[J].ACS Photonics,2017,4(3):482-488.
[41] [41] Flory N, Ma P, Salamin Y, et al. Waveguide-integrated Van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J].Nature Nanotechnology,2020,15(2):118-124.
[42] [42] Yu W, Li S, Zhang Y, et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility[J].Small,2017,13(24):1700268.
[43] [43] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors [J].Nature Photonics,2013,7(11):888-891
[44] [44] Geng D, Wu B, Guo Y, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface [J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(21):7992-7996.
[45] [45] Yang J, Huo N, Li Y, et al. Gate-tunable ultrahigh photoresponsivity of 2D heterostructures based on few layer MoS2 and solution-processed rGO[J].Advanced Electronic Materials,2015,1(10):1500267.
[46] [46] Huang P, Riccardi E, Messelot S, et al. Ultra-long carrier lifetime in neutral graphene-hBN van der Waals heterostructures under mid-infrared illumination[J].Nature Communications,2020,11(1):863.
[47] [47] Wang G, Zhang M, Chen D, et al. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors[J]. Nature Communications, 2018,9(1):5168.
[48] [48] Huo N, Wei Z, Meng X, et al. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2[J].Journal of Materials Chemistry C,2015,3(21):5467-5473.
[49] [49] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J].Nature Nanotechnology,2013,8(7):497-501.
[50] [50] Huo N, Tongay S, Guo W, et al. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures[J].Advanced Electronic Materials,2015,1(5):1400066.
[51] [51] Cheng R, Li D, Zhou H, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n Diodes[J].Nano Letters,2014,14(10):5590-5597
[52] [52] Jariwala D, Sangwan V K, Wu C C, et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode [J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(45):18076-18080.
[53] [53] Wang X, Huang L, Peng Y, et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions[J].Nano Research,2015,9(2):507-516.
[54] [54] Wang C H, Incorvia J A C, McClellan C J, et al. Unipolar n-type black phosphorus transistors with low work function contacts[J].Nano Letters,2018,18(5):2822-2827.
[55] [55] Liu S, Huo N, Gan S, et al. Thickness-dependent raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus[J].Journal of Materials Chemistry C,2015,3(42): 10974-10980.
[56] [56] Ye L, Wang P, Luo W, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J].Nano Energy,2017,37:53-60.
[57] [57] Chen X, Lu X, Deng B, et al. Widely tunable black phosphorus mid-infrared photodetector[J].Nature Communications,2017,8(1):1672.
[58] [58] Kwak D H, Ramasamy P, Lee Y S, et al. High-performance hybrid InP QDs/black phosphorus photodetector[J].ACS Appl Mater Interfaces,2019,11(32):29041-29046.
[59] [59] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J].Nature Materials,2004,3(6):404-409.
[60] [60] Yuan S, Shen C, Deng B, et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures[J].Nano Letters,2018,18(5):3172-3179.
Get Citation
Copy Citation Text
YANG Juehan, WEI Zhongming, NIU Zhichuan. Recent Progress on Two-Dimensional Heterostructure Based Photodetectors[J]. Journal of Synthetic Crystals, 2020, 49(3): 379
Category:
Received: --
Accepted: --
Published Online: Jun. 15, 2020
The Author Email: Zhichuan NIU (zcniu@semi.ac.cn)
CSTR:32186.14.