Acta Photonica Sinica, Volume. 53, Issue 1, 0111003(2024)

Boundary Perception Network for Pathological Image Segmentation

Hong HUANG1,*... Yichuan YANG1, Long WANG1, Fujian ZHENG1 and Jian WU2 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology and System,Ministry of Education,Chongqing University,Chongqing 400044,China
  • 2Head and Neck Cancer Centre,Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital,Chongqing 400030,China
  • show less
    Figures & Tables(12)
    The overall structure of the BPNet algorithm
    The structure of attention boundary perception module
    The structure of adaptive shuffle channel attention module
    The GlaS pathological image datasets
    The MoNuSeg nuclei datasets
    The segmentation results of different algorithms on GlaS datasets
    The segmentation results of ablation experiments on GlaS datasets
    The segmentation results of different algorithms on MoNuSeg datasets
    • Table 1. The experimental results with different methods on GlaS datasets(Mean ± Std)

      View table
      View in Article

      Table 1. The experimental results with different methods on GlaS datasets(Mean ± Std)

      AlgorithmDice/%IoU/%ACC/%PRE/%Parameters/(×106
      U-Net(2015)83.40±3.2671.84±5.8683.04±3.8379.99±6.5131.0
      UNet++(2018)85.11±0.7374.10±1.1085.48±0.4185.83±0.9739.4
      AttentionUNet(2018)86.30±2.0875.99±4.0086.39±2.9483.99±5.8263.1
      MultiResUNet(2020)87.20±0.9977.38±1.5586.98±0.6986.29±0.8559.1
      MedT(2021)82.86±0.9770.76±1.4182.46±0.7883.93±0.997.0
      TransUNet(2021)88.67±0.6579.66±1.0688.46±0.6990.00±0.78421.2
      UCTransNet(2022)89.39±0.6880.83±1.1187.93±0.9387.00±1.6565.5
      BPNet92.21±0.1985.55±0.3392.14±0.1592.07±0.9364.9
    • Table 2. The ablation experimental results on GlaS datasets(Mean ± Std)

      View table
      View in Article

      Table 2. The ablation experimental results on GlaS datasets(Mean ± Std)

      AlgorithmDice/%IoU/%ACC/%PRE/%Parameters/(×106
      Baseline87.09±1.9778.10±3.3388.65±2.1688.54±3.1063.3
      Baseline+BPM91.79±0.0984.81±0.1691.80±0.0792.87±0.3064.8
      Baseline+BPM+ASCAM92.21±0.1985.55±0.3392.14±0.1592.07±0.9364.9
    • Table 3. The experimental results with different methods on MoNuSeg datasets(Mean ± Std)

      View table
      View in Article

      Table 3. The experimental results with different methods on MoNuSeg datasets(Mean ± Std)

      AlgorithmDice/%IoU/%ACC/%PRE/%Parameters/(×106
      U-Net(2015)77.17±2.8462.90±3.7989.90±1.6265.01±3.6831.0
      UNet++(2018)78.90±0.5765.16±0.7890.98±0.3367.42±1.3239.4
      AttentionUNet(2018)75.00±1.8660.03±2.3888.40±1.4260.64±3.3963.1
      MultiResUNet(2020)79.70±0.6166.26±0.8491.52±0.3369.19±1.6159.1
      MedT(2021)74.48±0.6159.34±0.7789.15±0.1663.61±3.307.0
      TransUNet(2021)80.50±0.3967.37±0.5491.40±0.2473.42±1.48421.2
      UCTransNet(2022)79.08±0.7965.58±1.0091.02±0.5370.38±1.1365.5
      BPNet81.18±0.4468.34±0.6592.50±0.2475.46±2.1564.9
    • Table 4. The ablation experimental results on MoNuSeg datasets(Mean ± Std)

      View table
      View in Article

      Table 4. The ablation experimental results on MoNuSeg datasets(Mean ± Std)

      AlgorithmDice/%IoU/%ACC/%PRE/%Parameters/(×106
      Baseline77.74±0.7363.59±0.9891.47±0.0673.38±2.7463.3
      Baseline+BPM79.96±0.4666.61±0.6492.02±0.3673.97±4.2164.8
      Baseline+BPM+ASCAM81.18±0.4468.34±0.6592.50±0.2475.46±2.1564.9
    Tools

    Get Citation

    Copy Citation Text

    Hong HUANG, Yichuan YANG, Long WANG, Fujian ZHENG, Jian WU. Boundary Perception Network for Pathological Image Segmentation[J]. Acta Photonica Sinica, 2024, 53(1): 0111003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 4, 2023

    Accepted: Aug. 1, 2023

    Published Online: Feb. 1, 2024

    The Author Email: HUANG Hong (hhuang@cqu.edu.cn)

    DOI:10.3788/gzxb20245301.0111003

    Topics