Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 9, 1014(2024)
Dynamic cooperative relay system based on autoencoder
[2] [2] HE Hengtao, WEN Chaokai, JIN Shi, et al. Deep learning-based channel estimation for beamspace mmwave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018,7(5):852-855. doi:10.1109/LWC.2018.2832128.
[3] [3] NEUMANN D, WIESE T, UTSCHICK W. Learning the MMSE channel estimator[J]. IEEE Transactions on Signal Processing,2018,66(11):2905-2917. doi:10.1109/TSP.2018.2799164.
[4] [4] HUANG Hongji,YANG Jie,HUANG Hao,et al. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8549-8560. doi: 10.1109/TVT. 2018.2851783.
[5] [5] JIANG Yihan,KANNAN S,KIM H,et al. DEEPTURBO:deep turbo decoder[C]// 2019 IEEE the 20th International Workshop on Signal Processing Advances in Wireless Communications(SPAWC). Cannes: IEEE, 2019: 1-5. doi: 10.1109/SPAWC. 2019.8815400.
[6] [6] MU Tianjie,CHEN Xiaohui,CHEN Li,et al. An end?to?end block autoencoder for physical layer based on neural networks[EB/OL].(2019-06-15)[2021-01-15]. https://arxiv.org/abs/1906.06563.
[7] [7] O'SHEA T, HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017,3(4):563-575. doi:10.1109/TCCN.2017.2758370.
[8] [8] YE Hao,LI G Y,JUANG B H F,et al. Channel agnostic end-to-end learning based communication systems with conditional GAN[C]//2018 IEEE Globecom Workshops(GC Wkshps). Abu Dhabi:IEEE, 2018:1-5. doi:10.1109/GLOCOMW.2018.8644250.
[9] [9] ZHU Banghua,WANG Jintao,HE Longzhuang,et al. Joint transceiver optimization for wireless communication PHY using neural network[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6):1364-1373. doi:10.1109/JSAC.2019.2904361.
[11] [11] LU Yuxin,CHENG Peng,CHEN Zhuo,et al. Deep autoencoder learning for Relay-Assisted cooperative communication systems[J].IEEE Transactions on Communications, 2020,68(9):5471-5488. doi:10.1109/TCOMM.2020.2998538.
[12] [12] AHLSWEDE R, CAI Ning, LI S Y R, et al. Network information flow[J]. IEEE Transactions on Information Theory, 2000, 46(4):1204-1216. doi:10.1109/18.850663.
[13] [13] GUPTA A, SELLATHURAI M. End-to-end learning-based framework for amplify-and-forward relay networks[J]. IEEE Access, 2021(9):81660-81677. doi:10.1109/ACCESS.2021.3085901.
[14] [14] MUKHOPADHYAY R, NEOGY S, CHATTOPADHYAY S. Dynamic relay selection using a greedy cluster strategy[C]// 2020IEEE International Conference on Advanced Networks and Telecommunications Systems(ANTS). New Delhi: IEEE, 2020: 1-4.doi:10.1109/ANTS50601.2020.9342757.
[15] [15] BLETSAS A,SHIN H,WIN M Z. Cooperative communications with outage-optimal opportunistic relaying[J]. IEEE Transactions on Wireless Communications, 2007,6(9):3450-3460. doi:10.1109/TWC.2007.06020050.
[16] [16] MICHALOPOULOS D S, KARAGIANNIDIS G K. Performance analysis of single relay selection in Rayleigh fading[J]. IEEE Transactions on Wireless Communications, 2008,7(10):3718-3724. doi:10.1109/T-WC.2008.070492.
Get Citation
Copy Citation Text
WU Nan, WANG Yueran, WANG Xudong. Dynamic cooperative relay system based on autoencoder[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(9): 1014
Received: Dec. 5, 2022
Accepted: --
Published Online: Nov. 5, 2024
The Author Email: Nan WU (wu.nan@dlmu.edu.cn)