Infrared and Laser Engineering, Volume. 52, Issue 11, 20230151(2023)

Friction model identification and compensation strategy for photoelectric tracking system

Yunzhe Liu1, Yan Dong1, Wei Wang2, and Jianlin Song3
Author Affiliations
  • 1School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 2School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
  • 3Jilin Henghui Optoelectronic Technology Co., Ltd, Changchun 130022, China
  • show less

    ObjectiveThe photoelectric tracking system is affected by frictional torque during operation, resulting in jitter and climbing during the tracking process, which seriously affects the tracking accuracy. For the accurate compensation of frictional torque, this paper proposes a method of least squares method combined with particle swarm optimization algorithm for parameter identification with reference to Stribeck friction model, and uses the disturbance separation active disturbance rejection control (DSADRC) algorithm to compensate the identified friction model.MethodsFirst, the turntable system is modeled to analyze the disturbance of friction on the system. According to the characteristics of Stribeck friction model, the corresponding data were measured by constant speed-torque experiment, and the minimum squares method and particle swarm algorithm were used to identify the moment data, and the Stribeck model was established and added to the system. Then the identified friction model is compensated by using DSADRC. Last, the compensator is designed based on DSADRC. Experimental results show that the average error between the friction model identified by the combination of least squares method and particle swarm algorithm and the measured data is 3.4%. Then PID control, active disturbance rejection control and disturbance separation active disturbance rejection control algorithms are used to control and compensate the friction torque. The results show that the maximum speed error of the disturbance separation active disturbance rejection control is 77.72% and 58.78% (Fig.8, Tab.4) lower than that of the PID control and the active disturbance rejection control respectively. The friction torque suppression of the disturbance separation active disturbance rejection control improves the PID control and the classical ADRC by 73.59% and 60.59% (Fig.9, Tab.5) respectively. The steady state error of the tracking system is reduced, and the tracking performance of the system is improved.Results and DiscussionsBy comparing the results of parameter identification of Stribeck model (Tab.3) with experimental results by using the least squares method and particle swarm algorithm, the average error between the identified friction model and the measured data is 3.4% (Fig.7). And then PID control, active disturbance rejection control and disturbance separation active disturbance rejection control algorithms are used to control and compensate the friction torque. The results show that the single-side maximum speed error of the disturbance separation active disturbance rejection control is 77.72% and 58.78% (Fig.8, Tab.4) lower than that of the PID control and the active disturbance rejection control respectively. The friction torque suppression of the disturbance separation active disturbance rejection control improves the PID control and the ADRC by 73.59% and 60.59% (Fig.9, Tab.5) respectively.ConclusionsThe parameters of the linear and nonlinear parts of the Stribeck friction model were identified by combining the least squares method and particle swarm algorithm, and the average error between the identification results and the experimental data was 3.4%, which could better reflect the friction model. The friction model is compensated by using disturbance separation ADRC and compared with PID control and ADRC control. The comparison results show that the single-side maximum speed error of the disturbance separation ADRC is 77.72% and 58.78% lower than that of PID control and ADRC control. Compared with PID control and ADRC control on friction torque suppression, the proposed method increases by 73.59% and 60.59% respectively. Through experimental results, it is proved that the disturbance separation self-rejection can not only make full use of the basis of the known information of the system, reduce the waste of information caused by the design, save time, but also reduce the steady-state error of the system, improve the tracking performance of the system, and have certain application value in engineering.

    Tools

    Get Citation

    Copy Citation Text

    Yunzhe Liu, Yan Dong, Wei Wang, Jianlin Song. Friction model identification and compensation strategy for photoelectric tracking system[J]. Infrared and Laser Engineering, 2023, 52(11): 20230151

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 20, 2023

    Accepted: Oct. 16, 2023

    Published Online: Jan. 8, 2024

    The Author Email:

    DOI:10.3788/IRLA20230151

    Topics