Acta Photonica Sinica, Volume. 51, Issue 12, 1206002(2022)

Wavefront Distortion Restoration Method Based on Residual Attention Network

Yang CAO... Zupeng ZHANG* and Xiaofeng PENG |Show fewer author(s)
Author Affiliations
  • School of Electrical and Electronic Engineering,Chongqing University of Technology,Chongqing 400054,China
  • show less
    Figures & Tables(17)
    Schematic diagram of AO system without wavefront detection
    Overall network structure
    Structure diagram of mixed attention
    Turbulent phase distribution and light intensity distribution
    Loss function and accuracy of the model
    Comparison of the predicted turbulence phase with the actual phase
    Comparison of the predicted Zernike coefficient with the actual coefficient
    Light intensity map at different SNR
    Residual phase at different SNR
    Comparison of prediction results between the model with partial attention mechanism removed and the complete model
    Comparison of partial loss function with complete model
    • Table 1. Parameter of simulation

      View table
      View in Article

      Table 1. Parameter of simulation

      ParameterValue
      Laser wavelength λ1 550 nm
      Width of phase screen D0.3 m
      Beam waist w03 cm
      Topological charge l3
      Radial index p0
      Transmission distance z1 km
      Number of phase screens10
    • Table 2. PV and RMS values of the residual phase at different turbulence intensities

      View table
      View in Article

      Table 2. PV and RMS values of the residual phase at different turbulence intensities

      D/r0=2D/r0=5D/r0=10D/r0=15D/r0=20
      OursRef.[12OursRef.[12OursRef.[12OursRef.[12OursRef.[12
      PV/rad0.0450.0820.1950.2140.2260.4150.1960.4390.2750.381
      RMS/rad0.0110.0240.0320.0810.0460.1690.0530.2250.0710.315
    • Table 3. PV and RMS values of the residual phase at different SNR

      View table
      View in Article

      Table 3. PV and RMS values of the residual phase at different SNR

      SNRD/r0=2D/r0=5D/r0=10D/r0=15D/r0=20
      PV/radRMS/radPV/radRMS/radPV/radRMS/radPV/radRMS/radPV/radRMS/rad
      5 dB0.1310.0230.1780.0510.4810.1330.7310.1520.6240.129
      15 dB0.0510.0110.1350.0300.2440.1060.3910.1250.3420.095
      25 dB0.0310.0060.1050.0150.1380.0690.1380.1180.1210.071
    • Table 4. Comparison of accuracy and calculation time of different models

      View table
      View in Article

      Table 4. Comparison of accuracy and calculation time of different models

      ModelAccuracyTime/ms
      ResNet500.8928.35
      ResNet50+SA0.9349.07
      ResNet50+CA0.9419.44
      ResNet50+CA+SA0.9719.51
    • Table 5. Comparison of evaluation indexes of removing partial attention mechanism

      View table
      View in Article

      Table 5. Comparison of evaluation indexes of removing partial attention mechanism

      Complete modelRemove CARemove SA
      PV/rad0.145 10.258 90.373
      RMS/rad0.052 70.077 10.088 1
    • Table 6. Comparison of evaluation indexes of partial loss function

      View table
      View in Article

      Table 6. Comparison of evaluation indexes of partial loss function

      Complete modelRemove PVRemove RMS
      PV/rad0.164 90.354 60.274 7
      RMS/rad0.039 50.070 80.080 9
    Tools

    Get Citation

    Copy Citation Text

    Yang CAO, Zupeng ZHANG, Xiaofeng PENG. Wavefront Distortion Restoration Method Based on Residual Attention Network[J]. Acta Photonica Sinica, 2022, 51(12): 1206002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Mar. 17, 2022

    Accepted: Jul. 1, 2022

    Published Online: Feb. 6, 2023

    The Author Email: ZHANG Zupeng (pzzwint@163.com)

    DOI:10.3788/gzxb20225112.1206002

    Topics