Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 7, 776(2024)

Raspberry Pi flame recognition system based on improved YOLOv5

DENG Li*, XIE Shuangshuang, ZHU Bo, WU Dandan, and LIU Quanyi
Author Affiliations
  • [in Chinese]
  • show less
    References(4)

    [4] [4] KANG K. Comparison of face recognition and detection models: using different convolution neural networks[J]. Optical Memory and Neural Networks, 2019(28):101-108. doi:10.3103/S1060992X19020036.

    [5] [5] PAN Jin,OU Xiaoming,XU Liang. A collaborative region detection and grading framework for forest fire smoke using weakly supervised fine segmentation and lightweight faster-RCNN[J]. Forests, 2021,12(6):768. doi:10.3390/f12060768.

    [7] [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas,NV,USA:IEEE, 2016:779-788. doi:10.1109/CVPR.2016.91.

    [12] [12] YAN Bin,FAN Pan,LEI Xiaoyan,et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J].Remote Sensing, 2021,13(9):1619. doi:10.3390/rs13091619.

    Tools

    Get Citation

    Copy Citation Text

    DENG Li, XIE Shuangshuang, ZHU Bo, WU Dandan, LIU Quanyi. Raspberry Pi flame recognition system based on improved YOLOv5[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(7): 776

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 24, 2022

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Li DENG (bitdengli@163.com)

    DOI:10.11805/tkyda2022156

    Topics