Journal of the Chinese Ceramic Society, Volume. 52, Issue 6, 2094(2024)

Influence of Impurities in Ordinary Sintered Magnesia Aggregates on Thermal Shock Resistance and High Temperature Fracture Behavior of MgO-C Refractory

WANG Chao... LI Yawei*, XU Xiaofeng, CHEN Qilong and WANG Guanzheng |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(36)

    [1] [1] REN X M, MA B Y, LI S M, et al. Comparison study of slag corrosion resistance of MgO-MgAl2O4, MgO-CaO and MgO-C refractories under electromagnetic field[J]. J Iron Steel Res Int, 2021, 28(1): 38-45.

    [2] [2] ZHU L, LIU C Y, DU C M, et al. Dissolution behavior of spent MgO-C refractory in the CaO-SiO2-FeO slag system as a steelmaking flux[J]. Ceram Int, 2023, 49(15): 24931-24940.

    [3] [3] NIE Bohua. Refract Lime, 2019, 44(3): 4-6.

    [4] [4] LUZ A P, SALOM?O R, BITENCOURT C S, et al. Thermosetting resins for carbon-containing refractories: Theoretical basis and novel insights[J]. Open Ceram, 2020, 3: 100025.

    [5] [5] CHENG Y, ZHU T B, LI Y W, et al. Microstructure and properties of MgO-C refractory with different carbon contents[J]. Ceram Int, 2021, 47(2): 2538-2546.

    [6] [6] XU X F, LI Y W, DAI Y J, et al. Influence of graphite content on fracture behavior of MgO-C refractories based on wedge splitting test with digital image correlation method and acoustic emission[J]. Ceram Int, 2021, 47(9): 12742-12752.

    [7] [7] YANG P, XIAO G Q, DING D H, et al. Antioxidant properties of low-carbon magnesia-carbon refractories containing AlB2-Al-Al2O3 composites[J]. Ceram Int, 2022, 48(1): 1375-1381.

    [8] [8] LI Y G, WANG J K, DUAN H J, et al. Catalytic preparation of carbon nanotube/SiC whisker bonded low carbon MgO-C refractories and their high-temperature mechanical properties[J]. Ceram Int, 2022, 48(4): 5546-5556.

    [9] [9] KIM J, JEONG S, LEE M, et al. Effects of expanded graphite content on the performance of MgO-C refractories[J]. Int J Appl Ceram Technol, 2023, 20(6): 3803-3813.

    [10] [10] GAO Zhi, MA Beiyue. J Iron Steel Res, 2021, 33(5): 353-362.

    [11] [11] ZHU T B, LI Y W, SANG S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceram Int, 2014, 40(3): 4333-4340.

    [12] [12] YANG M Y, XIAO G Q, DING D H, et al. Enhanced performance of ultra-low carbon MgO-C bricks by the addition of special C/MgAl2O4 composite powders[J]. Ceram Int, 2022, 48(17): 24411-24420.

    [13] [13] REN X M, MA B Y, LIU H, et al. Designing low-carbon MgO-Al2O3-La2O3-C refractories with balanced performance for ladle furnaces[J]. J Eur Ceram Soc, 2022, 42(9): 3986-3995.

    [14] [14] SU K, ZHANG Q, TIAN X K, et al. Role of nano-Al2O3 particles in improving the properties of MgO-C slide plate materials[J]. Ceram Int, 2023, 49(14): 23696-23703.

    [15] [15] GU Q, LIU G Q, LI H X, et al. Synthesis of MgO-MgAl2O4 refractory aggregates for application in MgO-C slide plate[J]. Ceram Int, 2019, 45(18): 24768-24776.

    [16] [16] W?HRMEYER C, GAO S, PING Z F, et al. Corrosion mechanism of MgO-CMA-C ladle brick with high service life[J]. Steel Res Int, 2020, 91(2): 1900436.

    [17] [17] ZHAO Rui. Refract Lime, 2019, 44(5): 43-48.

    [18] [18] GAO Jianying. New ways to improve the high-temperature oxidation resistance of carbon-containing refractories[C]//The 17th National Youth Conference of Refractory, Luoyang, 2020

    [19] [19] GUO W J, ZHU T B, ZHAO X, et al. Improved slag corrosion resistance of MgO-C refractories with calcium magnesium aluminate aggregate and silicon carbide: Corrosion behavior and thermodynamic simulation[J]. J Eur Ceram Soc, 2023, 44(1): 496-509.

    [20] [20] CHEN Q L, LI Y W, ZHU T B, et al. Improved thermal shock resistance of MgO-C refractories with addition of calcium magnesium aluminate (CMA) aggregates[J]. Ceram Int, 2022, 48(2): 2500-2509.

    [21] [21] XU X F, ZHU T B, LI Y W, et al. Effect of particle grading on fracture behavior and thermal shock resistance of MgO-C refractories[J]. J Eur Ceram Soc, 2022, 42(2): 672-681.

    [22] [22] STüCKELSCHWEIGER, GRUBER, JIN, et al. Wedge-splitting test on carbon-containing refractories at high temperatures[J]. Appl Sci, 2019, 9(16): 3249.

    [23] [23] ZHU T B, LI Y W, SANG S B, et al. Fracture behavior of low carbon MgO-C refractories using the wedge splitting test[J]. J Eur Ceram Soc, 2017, 37(4): 1789-1797.

    [25] [25] ZHANG Y, CHEN J F, LI N, et al. The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry[J]. Ceram Int, 2018, 44(14): 16435-16442.

    [26] [26] GOKCE A S, GURCAN C, OZGEN S, et al. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks[J]. Ceram Int, 2008, 34(2): 323-330.

    [27] [27] LIU H T, MENG F R, LI Q, et al. Phase behavior analysis of MgO-C refractory at high temperature: Influence of Si powder additives[J]. Ceram Int, 2015, 41(3): 5186-5190.

    [28] [28] ZHONG H T, HAN B Q, WEI J W, et al. The microstructure evolution and performance enhancement of MgO-C refractories by the addition of MA90 spinel micro-powder[J]. J Eur Ceram Soc, 2024, 44(1): 532-543.

    [29] [29] ZHU T B, LI Y W, SANG S B, et al. Formation of hollow MgO-rich spinel whiskers in low carbon MgO-C refractories with Al additives[J]. J Eur Ceram Soc, 2014, 34(16): 4425-4432.

    [30] [30] YU C, DING J, DENG C J, et al. The effects of sintering temperature on the morphology and physical properties of in situ Si3N4 bonded MgO-C refractory[J]. Ceram Int, 2018, 44(1): 1104-1109.

    [31] [31] CHEN Y, WANG X, DENG C J, et al. Growth mechanism of in situ MgSiN2 and its synergistic effect on the properties of MgO-C refractories[J]. Constr Build Mater, 2021, 289: 123032.

    [32] [32] DAI Y J, LI Y W, JIN S L, et al. Mechanical and fracture investigation of magnesia refractories with acoustic emission-based method[J]. J Eur Ceram Soc, 2020, 40(1): 181-191.

    [33] [33] DAI Y J, YIN Y C, XU X F, et al. Effect of the phase transformation on fracture behaviour of fused silica refractories[J]. J Eur Ceram Soc, 2018, 38(16): 5601-5609.

    [34] [34] CHEN A B, FU Y H, MU Y D, et al. Oxidation resistance of andalusite-bearing Al2O3-SiC-C castables containing reduced anti-oxidant[J]. Ceram Int, 2021, 47(10): 14579-14586.

    [35] [35] ATZENHOFER C, HARMUTH H. Phase formation in MgO-C refractories with different antioxidants[J]. J Eur Ceram Soc, 2021, 41(14): 7330-7338.

    [36] [36] ZHANG S, MARRIOTT N J, LEE W E. Thermochemistry and microstructures of MgO-C refractories containing various antioxidants[J]. J Eur Ceram Soc, 2001, 21(8): 1037-1047.

    [37] [37] WANG Xian, ZHU Boquan, LI Xiangcheng, et al. Refractories, 2015, 49(6): 412-415

    Tools

    Get Citation

    Copy Citation Text

    WANG Chao, LI Yawei, XU Xiaofeng, CHEN Qilong, WANG Guanzheng. Influence of Impurities in Ordinary Sintered Magnesia Aggregates on Thermal Shock Resistance and High Temperature Fracture Behavior of MgO-C Refractory[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2094

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 15, 2023

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Yawei LI (liyawei@wust.edu.cn; xuxiaofeng@wustedu.cn)

    DOI:10.14062/j.issn.0454-5648.20230717

    Topics