Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2175(2024)
Radiative Cooling Properties of Al2O3-Doped Colorless Polyimide/Ag Flexible Films
[1] [1] HE Z Q, YAN Y F, ZHANG Z E. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review[J]. Energy, 2021, 216: 119223.
[2] [2] OZMAT B. Interconnect technologies and the thermal performance of MCM[J]. IEEE Trans Compon Hybrids Manuf Technol, 1992, 15(5): 860-869.
[3] [3] CHEN L, MSIGWA G, YANG M Y, et al. Strategies to achieve a carbon neutral society: A review[J]. Environ Chem Lett, 2022, 20(4): 2277-2310.
[4] [4] LI X, DING Z M, KONG L H, et al. Recent progress in organic-based radiative cooling materials: Fabrication methods and thermal management properties[J]. Mater Adv, 2023, 4(3): 804-822.
[5] [5] WU S L, CAO Y J, LI Y Q, et al. Recent advances in material engineering and applications for passive daytime radiative cooling[J]. Adv Opt Mater, 2023, 11(4): 2202163.
[6] [6] LU X, XU P, WANG H L, et al. Cooling potential and applications prospects of passive radiative cooling in buildings: The Current state-of-the-art[J]. Renew Sustain Energy Rev, 2016, 65: 1079-1097.
[7] [7] LI W X, LI Y R, SHAH K W. A materials perspective on radiative cooling structures for buildings[J]. Sol Energy, 2020, 207: 247-269.
[8] [8] ZHAO B, HU M K, AO X Z, et al. Spectrally selective approaches for passive cooling of solar cells: A review[J]. Appl Energy, 2020, 262: 114548.
[9] [9] SLAUCH I M, DECEGLIE M G, SILVERMAN T J, et al. Model for characterization and optimization of spectrally selective structures to reduce the operating temperature and improve the energy yield of photovoltaic modules[J]. ACS Appl Energy Mater, 2019, 2(5): 3614-3623.
[10] [10] SMITH D. Smart clothes and wearable technology[J]. AI Society, 2007, 22(1): 1-3.
[11] [11] FAN L L, LI W, JIN W L, et al. Maximal nighttime electrical power generation via optimal radiative cooling[J]. Opt Express, 2020, 28(17): 25460-25470.
[12] [12] ISHII S, DAO T D, NAGAO T. Radiative cooling for continuous thermoelectric power generation in day and night[J]. Appl Phys Lett, 2020, 117(1): 013901.
[13] [13] ZHOU M, SONG H M, XU X Y, et al. Vapor condensation with daytime radiative cooling[J]. Proc Natl Acad Sci USA, 2021, 118(14): e2019292118.
[14] [14] LIU C Y, FAN J J, BAO H. Hydrophilic radiative cooler for direct water condensation in humid weather[J]. Sol Energy Mater Sol Cells, 2020, 216: 110700.
[15] [15] DAS B. Obtaining Wien’s displacement law from Planck’s law of radiation[J]. Phys Teach, 2002, 40(3): 148-149.
[16] [16] ZHOU K, LI W, PATEL B B, et al. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling[J]. Nano Lett, 2021, 21(3): 1493-1499.
[17] [17] XIAO R C, HOU C Y, YANG W F, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Appl Mater Interfaces, 2019, 11(47): 44673-44681.
[18] [18] SONG W Z, WANG X X, QIU H J, et al. Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling[J]. Nano Energy, 2021, 82: 105695.
[19] [19] SHANMUGAM S, VISWANATHAN B, VARADARAJAN T K. A novel single step chemical route for noble metal nanoparticles embedded organic-inorganic composite films[J]. Mater Chem Phys, 2006, 95(1): 51-55.
[20] [20] LEROY A, BHATIA B, KELSALL C C, et al. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel[J]. Sci Adv, 2019, 5(10): eaat9480.
[21] [21] CAI C Y, WEI Z C, DING C X, et al. Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building[J]. Nano Lett, 2022, 22(10): 4106-4114.
[22] [22] ZHAI Y, MA Y G, DAVID S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J]. Science, 2017, 355(6329): 1062-1066.
[23] [23] ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
[24] [24] WANG T, WU Y, SHI L, et al. A structural polymer for highly efficient all-day passive radiative cooling[J]. Nat Commun, 2021, 12(1): 365.
[25] [25] BANIK U, AGRAWAL A, MEDDEB H, et al. Efficient thin polymer coating as a selective thermal emitter for passive daytime radiative cooling[J]. ACS Appl Mater Interfaces, 2021, 13(20): 24130-24137.
[26] [26] HUANG W L, CHEN Y J, LUO Y, et al. Scalable aqueous processing-based passive daytime radiative cooling coatings[J]. Adv Funct Materials, 2021, 31(19): 2010334.
[27] [27] ZHOU L, ZHAO J T, HUANG H Y, et al. Flexible polymer photonic films with embedded microvoids for high-performance passive daytime radiative cooling[J]. ACS Photonics, 2021, 8(11): 3301-3307.
[28] [28] LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nat Nanotechnol, 2021, 16(2): 153-158.
[29] [29] XIANG B, ZHANG R, LUO Y L, et al. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling[J]. Nano Energy, 2021, 81: 105600.
[30] [30] TAM H T T, TOMA M, KAJIKAWA K. Investigation of polyesters as daytime radiative cooling materials[J]. Mol Cryst Liq Cryst, 2022, 741(1): 17-23.
[31] [31] YI C H, LI W M, SHI S, et al. High-temperature-resistant and colorless polyimide: Preparations, properties, and applications[J]. Sol Energy, 2020, 195: 340-354.
[32] [32] CHEN G L, WANG Y M, QIU J, et al. A facile bioinspired strategy for accelerating water collection enabled by passive radiative cooling and wettability engineering[J]. Mater Des, 2021, 206: 109829.
[33] [33] MANDAL J, FU Y K, OVERVIG A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 2018, 362(6412): 315-319.
[34] [34] DE ZOYSA M, ASANO T, MOCHIZUKI K, et al. Conversion of broadband to narrowband thermal emission through energy recycling[J]. Nat Photon, 2012, 6: 535-539.
[35] [35] ZHAO B, HU M K, AO X Z, et al. Radiative cooling: A review of fundamentals, materials, applications, and prospects[J]. Appl Energy, 2019, 236: 489-513.
[36] [36] LI P, WANG A, FAN J, et al. Thermo‐optically designed scalable photonic films with high thermal conductivity for sub-ambient and above‐ambient radiative cooling[J]. Adv Funct Mater, 2022, 32(5): 2109542.
[37] [37] CHAE D, LIM H, SO S, et al. Spectrally selective nanoparticle mixture coating for passive daytime radiative cooling[J]. ACS Appl Mater Interfaces, 2021, 13(18): 21119-21126.
[38] [38] YU N, MANDAL J, OVERVIG A, et al. Systems and Methods for Radiative Cooling and Heating[P]. Brookhaven National Lab (BNL),Upton, NY (United States), 2019.
[39] [39] MANDAL J, YANG Y, YU N F, et al. Paints as a scalable and effective radiative cooling technology for buildings[J]. Joule, 2020, 4(7): 1350-1356.
[40] [40] BEI R X, QIAN C, ZHANG Y, et al. Intrinsic low dielectric constant polyimides: Relationship between molecular structure and dielectric properties[J]. J Mater Chem C, 2017, 5(48): 12807-12815.
[41] [41] WU X M, SHU C, HE X Q, et al. Optically transparent and thermal-stable polyimide films derived from a semi-aliphatic diamine: Synthesis and properties[J]. Macro Chem Phys, 2020, 221(5): 1900506.
[42] [42] XIAO M, LI N, MA Z K, et al. The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre[J]. RSC Adv, 2017, 7(89): 56602-56610.
[43] [43] CHOI I H, SOHN B, CHANG J H. Synthesis and characterization of transparent copolyimide films containing CF3 groups: Comparison with copolyimide nanocomposites[J]. Appl Clay Sci, 2010, 48(1/2): 117-126.
[44] [44] SCHWERDTFEGER P, LAERDAHL J K, CHARDONNET C. Calculation of parity-violation effects for the C-F stretching mode of chiral methyl fluorides[J]. Phys Rev A, 2002, 65(4): 042508.
[45] [45] LI M M, GAN F, DONG J, et al. Facile preparation of continuous and porous polyimide aerogel fibers for multifunctional applications[J]. ACS Appl Mater Interfaces, 2021, 13(8): 10416-10427.
[46] [46] REDAOUI D, SAHNOUNE F, HERAIZ M, et al. Mechanism and kinetic parameters of the thermal decomposition of gibbsite Al(OH)3 by thermogravimetric analysis[J]. Acta Phys Pol A, 2017, 131(3): 562-565.
[47] [47] FAN D S, SUN H, LI Q. Thermal control properties of radiative cooling foil based on transparent fluorinated polyimide[J]. Sol Energy Mater Sol Cells, 2019, 195: 250-257.
[48] [48] YAN L, LI Y S, XIANG C B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research[J]. Polymer, 2005, 46(18): 7701-7706.
Get Citation
Copy Citation Text
LIANG Dongdong, REN Jie, LIU Huan, YANG Yingxin, ATSHA Ambar, SUN Ying, WANG Cong. Radiative Cooling Properties of Al2O3-Doped Colorless Polyimide/Ag Flexible Films[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2175
Category:
Received: Oct. 18, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Cong WANG (congwang@buaa.edu.cn)