International Journal of Extreme Manufacturing, Volume. 6, Issue 3, 32011(2024)
Piezotronic neuromorphic devices:principle, manufacture, and applications
[1] [1] Xia Q F and Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309–23
[2] [2] Zidan M A, Strachan J P and Lu W D 2018 The future of electronics based on memristive systems Nat. Electron.1 22–29
[3] [3] Tang J S et al 2019 Bridging biological and artificial neural networks with emerging neuromorphic devices:fundamentals, progress, and challenges Adv. Mater.31 1902761
[4] [4] Zhu J D, Zhang T, Yang Y C and Huang R 2020 A comprehensive review on emerging artificial neuromorphic devices Appl. Phys. Rev. 7 011312
[5] [5] Van De Burgt Y, Melianas A, Keene S T, Malliaras G and Salleo A 2018 Organic electronics for neuromorphic computing Nat. Electron. 1 386–97
[6] [6] Wang Y F, Sun Q J, Yu J R, Xu N, Wei Y C, Cho J H and Wang Z L 2023 Boolean logic computing based on neuromorphic transistor Adv. Funct. Mater. 33 2305791
[7] [7] Ji J L et al 2023 Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors Infomat 5 e12478
[8] [8] Jeon Y B, Sood R, Jeong J H and Kim S G 2005 MEMS power generator with transverse mode thin film PZT Sens.Actuators A 122 16–22
[9] [9] Shen D N, Park J H, Ajitsaria J, Choe S Y, Wikle H C and Kim D J 2008 The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting J. Micromech. Microeng.18 055017
[10] [10] Wang Z L 2007 Nanopiezotronics Adv. Mater. 19 889–92
[11] [11] Wang Z L 2010 Piezopotential gated nanowire devices: piezotronics and piezo-phototronics Nano Today 5 540–52
[12] [12] Wang Z L 2012 Self-powered nanosensors and nanosystems Adv. Mater. 24 280–5
[13] [13] Sun Q J, Seung W, Kim B J, Seo S, Kim S W and Cho J H 2015 Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors Adv. Mater.27 3411–7
[14] [14] Sun Q J, Ho D H, Choi Y, Pan C F, Kim D H, Wang Z L and Cho J H 2016 Piezopotential-programmed multilevel nonvolatile memory as triggered by mechanical stimuli ACS Nano 10 11037–43
[15] [15] Zhao J et al 2019 Static and dynamic piezopotential modulation in piezo-electret gated MoS2 field-effect transistor ACS Nano 13 582–90
[16] [16] Kim B Y, Hwang H G, Woo J U, Lee W H, Lee T H,Kang C Y and Nahm S 2017 Nanogenerator-induced synaptic plasticity and metaplasticity of bio-realistic artificial synapses NPG Asia Mater. 9 e381
[17] [17] Chen Y H et al 2019 Piezotronic graphene artificial sensory synapse Adv. Funct. Mater. 29 1900959
[18] [18] Wang Z L and Song J H 2006 Piezoelectric nanogenerators based on zinc oxide nanowire arrays Science 312 242–6
[19] [19] Wu W Z, Wei Y G and Wang Z L 2010 Strain-gated piezotronic logic nanodevices Adv. Mater. 22 4711–5
[20] [20] Wu W Z, Wen X N and Wang Z L 2013 Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging Science 340 952–7
[21] [21] Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y and Wang Z L 2013 High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array Nat. Photon. 7 752–8
[22] [22] Z W W et al 2014 Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics Nature514 470–4
[23] [23] Liu S H, Wang L F, Feng X L, Wang Z, Xu Q, Bai S, Qin Y and Wang Z L 2017 Ultrasensitive 2D ZnO piezotronic transistor array for high resolution tactile imaging Adv.Mater. 29 1606346
[24] [24] Han J H et al 2018 Machine learning-based self-powered acoustic sensor for speaker recognition Nano Energy53 658–65
[25] [25] Zhang S et al 2020 Strain-controlled power devices as inspired by human reflex Nat. Commun. 11 326
[26] [26] Zheng Q et al 2021 Dynamic real-time imaging of living cell traction force by piezo-phototronic light Nano-antenna array Sci. Adv. 7 eabe7738
[27] [27] Jiang L M, Lu G X, Zeng Y S, Sun Y Z, Kang H C, Burford J, Gong C, Humayun M S, Chen Y and Zhou Q F 2022 Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses Nat.Commun. 13 3853
[28] [28] Kang J H, Liu W, Sarkar D, Jena D and Banerjee K 2014 Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors Phys. Rev.X 4 031005
[29] [29] Zhang Y, Liu Y and Wang Z L 2011 Fundamental theory of piezotronics Adv. Mater. 23 3004–13
[30] [30] Wang Z L 2012 Progress in piezotronics and piezo-phototronics Adv. Mater. 24 4632–46
[31] [31] Wang Z L and Wu W Z 2014 Piezotronics and piezo-phototronics: fundamentals and applications Natl Sci. Rev. 1 62–90
[32] [32] Wu W Z and Wang Z L 2016 Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics Nat. Rev. Mater. 1 16031
[33] [33] Zhang Y, Leng Y S, Willatzen M and Huang B L 2018 Theory of piezotronics and piezo-phototronics MRS Bull.43 928–35
[34] [34] Wang L F and Wang Z L 2021 Advances in piezotronic transistors and piezotronics Nano Today 37 101108
[35] [35] Liu Y, Niu S M, Yang Q, Klein B D B, Zhou Y S and Wang Z L 2014 Theoretical study of piezo-phototronic nano-LEDs Adv. Mater. 26 7209–16
[36] [36] Wang X D 2013 Piezotronics: a new field of strain-engineered functional semiconductor devices Am.Ceram. Soc. Bull. 92 18–23
[37] [37] Damjanovic D and Rossetti G A 2018 Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics MRS Bull. 43 588–94
[38] [38] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F and Wang Z L 2013 Theoretical study of contact-mode triboelectric nanogenerators as an effective power source Energy Environ. Sci. 6 3576–83
[39] [39] Yang B, Zeng W, Peng Z H, Liu S R, Chen K and Tao X M 2016 A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source Adv. Energy Mater. 6 1600505
[40] [40] Jana N R, Gearheart L and Murphy C J 2001 Wet chemical synthesis of high aspect ratio cylindrical gold nanorods J.Phys. Chem. B 105 4065–7
[41] [41] Jana N R, Gearheart L and Murphy C J 2001 Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio Chem. Commun. 2001 617–8
[42] [42] Caswell K K, Bender C M and Murphy C J 2003 Seedless,surfactantless wet chemical synthesis of silver nanowires Nano Lett. 3 667–9
[43] [43] Kaidashev E M, Lorenz M, Von Wenckstern H, Rahm A,Semmelhack H C, Han K H, Benndorf G, Bundesmann C, Hochmuth H and Grundmann M 2003 High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition Appl. Phys.Lett. 82 3901–3
[44] [44] Lorenz M, Kaidashev E M, Rahm A, Nobis T, Lenzner J,Wagner G, Spemann D, Hochmuth H and Grundmann M 2005 MgxZn1?xO (0?x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition Appl.Phys. Lett. 86 143113
[45] [45] Cao B Q, Lorenz M, Rahm A, Von Wenckstern H,Czekalla C, Lenzner J, Benndorf G and Grundmann M 2007 Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition Nanotechnology 18 455707
[46] [46] Tien L C, Pearton S J, Norton D P and Ren F 2008 Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition J. Mater. Sci. 43 6925–32
[47] [47] Okada T, Agung B H and Nakata Y 2004 ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition Appl. Phys. A 79 1417–9
[48] [48] Park I, Li Z Y, Pisano A P and Williams R S 2010 Top-down fabricated silicon nanowire sensors for real-time chemical detection Nanotechnology 21 015501
[49] [49] Elibol O H, Morisette D, Akin D, Denton J P and Bashir R 2003 Integrated nanoscale silicon sensors using top-down fabrication Appl. Phys. Lett. 83 4613–5
[50] [50] Hobbs R G, Petkov N and Holmes J D 2012 Semiconductor nanowire fabrication by bottom-up and top-down paradigms Chem. Mater. 24 1975–91
[51] [51] Li Q M, Westlake K R, Crawford M H, Lee S R, Koleske D D, Figiel J J, Cross K C, Fathololoumi S, Mi Z T and Wang G T 2011 Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays Opt. Express 19 25528–34
[52] [52] Han X, Du W M, Chen M X, Wang X D, Zhang X J, Li X Y,Li J, Peng Z C, Pan C F and Wang Z L 2017 Visualization recording and storage of pressure distribution through a smart matrix based on the piezotronic effect Adv. Mater.29 1701253
[53] [53] Oh H, Yi G C, Yip M and Dayeh S A 2020 Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics Sci. Adv. 6 eabd7795
[54] [54] Lee H K, Chung J, Chang S I and Yoon E 2008 Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors J.Microelectromech. Syst. 17 934–42
[55] [55] Zhang T, Liu H, Jiang L, Fan S W and Yang J 2013 Development of a flexible 3-D tactile sensor system for anthropomorphic artificial hand IEEE Sens. J.13 510–8
[56] [56] Wang Z L, Wu W Z, Falconi C, Wang Z L, Wu W Z and Falconi C 2018 Piezotronics and piezo-phototronics with third-generation semiconductors MRS Bull. 43 922–7
[57] [57] Pan C F, Zhai J Y and Wang Z L 2019 Piezotronics and piezo-phototronics of third generation semiconductor nanowires Chem. Rev. 119 9303–59
[58] [58] Wang Z N, Yu R M, Wen X N, Liu Y, Pan C F, Wu W Z and Wang Z L 2014 Optimizing performance of silicon-based p-n junction photodetectors by the piezo-phototronic effect ACS Nano 8 12866–73
[59] [59] Xue F et al 2016 p-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect Adv. Mater. 28 3391–8
[60] [60] Han X, Du W M, Yu R M, Pan C F and Wang Z L 2015 Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array Adv. Mater. 27 7963–9
[61] [61] Chen F R et al 2022 Mass transfer techniques for large-scale and high-density microLED arrays Int. J. Extrem. Manuf.4 042005
[62] [62] Zhao T M, Fu Y M, He H X, Dong C Y, Zhang L L, Zeng H,Xing L L and Xue X Y 2018 Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric-enzymatic reaction coupling process Nanotechnology 29 075501
[63] [63] Zhou R R, Hu G F, Yu R M, Pan C F and Wang Z L 2015 Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors Nano Energy 12 588–96
[64] [64] Guo J M, Wen R M, Zhai J Y and Wang Z L 2019 Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects Sci. Bull. 64 128–35
[65] [65] Pan H Y, Zhou L H, Zheng W, Liu X H, Zhang J and Pinna N 2023 Atomic layer deposition to heterostructures for application in gas sensors Int. J. Extrem. Manuf. 5 022008
[66] [66] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found Nature 453 80–83
[67] [67] Yang J J, Strukov D B and Stewart D R 2013 Memristive devices for computing Nat. Nanotechnol. 8 13–24
[68] [68] Wong H S P and Salahuddin S 2015 Memory leads the way to better computing Nat. Nanotechnol. 10 191–4
[69] [69] Wu W Z and Wang Z L 2011 Piezotronic nanowire-based resistive switches as programmable electromechanical memories Nano Lett. 11 2779–85
[70] [70] Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J and Pan C F 2016 A bamboo-like GaN microwire-based piezotronic memristor Adv. Funct. Mater. 26 5307–14
[71] [71] Hua Q L, Sun J L, Liu H T, Cui X, Ji K Y, Guo W B, Pan C F, Hu W G and Wang Z L 2020 Flexible GaN microwire-based piezotronic sensory memory device Nano Energy 78 105312
[72] [72] Ielmini D and Zhang Y G 2007 Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices J. Appl. Phys.102 054517
[73] [73] Lim E and Ismail R 2015 Conduction mechanism of valence change resistive switching memory: a survey Electronics4 586–613
[74] [74] Wan C J, Cai P Q, Wang M, Qian Y, Huang W and Chen X D 2020 Artificial sensory memory Adv. Mater. 32 1902434
[75] [75] Yu R M, Wu W Z, Ding Y and Wang Z L 2013 GaN nanobelt-based strain-gated piezotronic logic devices and computation ACS Nano 7 6403–9
[76] [76] Yu R M, Wu W Z, Pan C F, Wang Z N, Ding Y and Wang Z L 2015 Piezo-phototronic boolean logic and computation using photon and strain dual-gated nanowire transistors Adv. Mater. 27 940–7
[77] [77] Purusothaman Y, Alluri N R, Chandrasekhar A, Venkateswaran V and Kim S J 2019 Piezophototronic gated optofluidic logic computations empowering intrinsic reconfigurable switches Nat. Commun. 10 4381
[78] [78] Yang X X et al 2019 Coupled ion-gel channel-width gating and piezotronic interface gating in ZnO nanowire devices Adv. Funct. Mater. 29 1807837
[79] [79] Kim S, Choi Y J, Woo H J, Sun Q J, Lee S, Kang M S, Song Y J, Wang Z L and Cho J H 2018 Piezotronic graphene barristor: efficient and interactive modulation of Schottky barrier Nano Energy 50 598–605
[80] [80] Zhou K et al 2023 Manufacturing of graphene based synaptic devices for optoelectronic applications Int. J. Extrem.Manuf. 5 042006
[81] [81] Zhang X M et al 2020 An artificial spiking afferent nerve based on Mott memristors for neurorobotics Nat.Commun. 11 51
[82] [82] Hua Q L, Cui X, Liu H T, Pan C F, Hu W G and Wang Z L 2020 Piezotronic synapse based on a single gan microwire for artificial sensory systems Nano Lett.20 3761–8
[83] [83] Hu G F, An H, Xi J G, Lu J F, Hua Q L and Peng Z C 2021 A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation Nano Energy 89 106282
[84] [84] Kumar M, Singh R, Kang H, Kim S and Seo H 2020 An artificial piezotronic synapse for tactile perception Nano Energy 73 104756
[85] [85] Gao Z Y, Ding Y, Lin S S, Hao Y and Wang Z L 2009 Dynamic fatigue studies of ZnO nanowires by in-situ transmission electron microscopy Phys. Status Solidi3 260–2
[86] [86] Song J Z, Feng X and Huang Y G 2016 Mechanics and thermal management of stretchable inorganic electronics Natl Sci. Rev. 3 128–43
[87] [87] Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T and Someya T 2008 A rubberlike stretchable active matrix using elastic conductors Science 321 1468–72
[88] [88] Vosgueritchian M, Lipomi D J and Bao Z N 2012 Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes Adv. Funct. Mater. 22 421–8
[89] [89] Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductors Int. J. Extrem. Manuf.5 042002
[90] [90] Wang D P, Zhao S F, Yin R Y, Li L L, Lou Z and Shen G Z 2021 Recent advanced applications of ion-gel in ionic-gated transistor npj Flex. Electron. 5 13
[91] [91] Wu W Z, Wang L, Yu R M, Liu Y Y, Wei S H, Hone J and Wang Z L 2016 Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics Adv. Mater. 28 8463–8
[92] [92] Q L X et al 2016 Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires ACS Nano 10 7451–7
[93] [93] Lin P, Zhu L P, Li D, Xu L, Pan C F and Wang Z L 2018 Piezo-phototronic effect for enhanced flexible MoS2/WSe2 van der waals photodiodes Adv. Funct. Mater.28 1802849
[94] [94] Wang L F, Liu S H, Zhang Z D, Feng X L, Zhu L P, Guo H Y, Ding W B, Chen L B, Qin Y and Wang Z L 2019 2D piezotronics in atomically thin zinc oxide sheets: interfacing gating and channel width gating Nano Energy 60 724–33
[95] [95] Peng Y Y, Que M L, Tao J, Wang X D, Lu J F, Hu G F, Wan B S, Xu Q and Pan C F 2018 Progress in piezotronic and piezo-phototronic effect of 2D materials 2D Mater.5 042003
[96] [96] Qi J L, Wu Z X, Wang W B, Bao K, Wang L Z, Wu J K, Ke C X, Xu Y and He Q Y 2023 Fabrication and applications of van der Waals heterostructures Int. J.Extrem. Manuf. 5 022007
[97] [97] Tan H W, Zhou Y F, Tao Q Z, Rosen J and Van Dijken S 2021 Bioinspired multisensory neural network with crossmodal integration and recognition Nat. Commun. 12 1120
[98] [98] Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat.Nanotechnol. 14 776–82
[99] [99] Zhou F C and Chai Y 2020 Near-sensor and in-sensor computing Nat. Electron. 3 664–71
[100] [100] Choi Y, Oh S, Qian C, Park J H and Cho J H 2020 Vertical organic synapse expandable to 3D crossbar array Nat.Commun. 11 4595
[101] [101] Wang T Y, Meng J L, Chen L, Zhu H, Sun Q Q, Ding S J,Bao W Z and Zhang D W 2020 Flexible 3D memristor array for binary storage and multi-states neuromorphic computing applications InfoMat 3 212–21
[102] [102] Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S, Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extrem. Manuf. 5 042010
Get Citation
Copy Citation Text
Xiangde Lin, Zhenyu Feng, Yao Xiong, Wenwen Sun, Wanchen Yao, Yichen Wei, Zhong Lin Wang, Qijun Sun. Piezotronic neuromorphic devices:principle, manufacture, and applications[J]. International Journal of Extreme Manufacturing, 2024, 6(3): 32011
Received: Jul. 4, 2023
Accepted: --
Published Online: Sep. 11, 2024
The Author Email: Sun Qijun (sunqijun@binn.cas.cn)