Optics and Precision Engineering, Volume. 32, Issue 24, 3616(2024)

Multi-feature cross UAV image detection algorithm under cross-layer attentional interaction

Zhihao ZHANG... Lixia DU, Yue HOU*, Ziwei HAO and Jie YIN |Show fewer author(s)
Author Affiliations
  • College of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730000, China
  • show less
    Figures & Tables(15)
    Multi-feature crossover UAV target detection network under cross-layer attentional interaction
    Sructure of the adaptive cross-layer attention interaction module
    Deformable encoder structure
    Structure diagram of the multi-scale feature fusion module
    Model visualisation process for the MCAI network (features of interest in red)
    Receptive field visualization experiment
    Image visualisation of a rainy day
    Visualization of the actual application scenario of the VisDrone2019-DET dataset
    Visualization of the actual application scenario of LZ Traffic Video
    • Table 1. Improved module ablation experiments

      View table
      View in Article

      Table 1. Improved module ablation experiments

      MethodsRPmAP0.5mAP0.5∶0.95mAP
      RT-DETR40.856.542.525.734.2
      G-ACAI41.957.644.427.535.6
      G-DMHSA4358.645.528.236.5
      G-MSCF44.258.846.128.536.8
    • Table 2. Category error experiments of the improved module

      View table
      View in Article

      Table 2. Category error experiments of the improved module

      MethodsClsLocDupeBkgMissFPFN
      RT-DETR20.983.820.212.1213.3110.9237.54
      G-ACAI20.793.300.432.2414.0711.2637.08
      G-DMHSA20.813.260.382.1713.8611.0536.65
      G-MSCF20.253.290.372.2713.7611.1236.70
    • Table 3. Robustness experiments on rainy weather on the VisDrone2019-DET dataset

      View table
      View in Article

      Table 3. Robustness experiments on rainy weather on the VisDrone2019-DET dataset

      MethodsmAP0.5@cleanmAP0.5@rainmAP0.5∶0.95@cleanmAP0.5∶0.95@rain
      YOLOv5-Decoder33.921.519.911.7
      YOLOv8-Deocder32.020.918.311.5
      RT-DETR42.532.625.719
      MCAI46.134.728.520.7
    • Table 4. Comparison of results of different algorithmic models on VisDrone2019-DET

      View table
      View in Article

      Table 4. Comparison of results of different algorithmic models on VisDrone2019-DET

      MethodBackbonemAPmAP0.5Param
      Faster-RCNNResNet5021.535.741.7
      RetinaNetResNet5016.127.321.37
      CenterNetDLA-3412.422.7025.6
      SSDVGG-168.616.64.23
      YOLOv3MobileNet8.117.73.75
      YOLOv4ResNet5018.625.386.06
      YOLOV5sCSPDarkNet19.129.87.05
      YOLOv7CSPDarkNet22.934.537.26
      RT-DETRResNet1832.642.521.3
      ATSS-FPN-DyHeadResNet5020.433.838.91
      TOODResNet5020.433.932.4
      DINODETR25.344.547.56
      YOLOX-TinyCSPDarkNet14.827.85.035
      GFLCSPDarkNet19.332.132.279
      RTMDetCSPDarkNet18.431.24.876
      MCAIResNet1836.846.122.4
    • Table 5. Overall performance comparison of BDD-100K dataset

      View table
      View in Article

      Table 5. Overall performance comparison of BDD-100K dataset

      MethodYearBackBonemAP0.5/%
      Faster-RCNN2016ResNet5034.45
      SSD2017VGG-1628.42
      RetinaNet2018ResNet5037.65
      CenterNet2020DLA-3440.40
      YOLOv32018MobileNet42.4
      YOLOv42020CSPDarkNet45.3
      YOLOv5s2020CSPDarkNet61
      YOLOv72022CSPDarkNet48.7
      RTDETR2023ResNet1870.2
      ATSS-FPN-DyHead2024ResNet5066.9
      TOOD2021ResNet5069.1
      DINO2023ResNet5070.4
      YOLOX-Tiny2021CSPDarkNet62.3
      GFL2020CSPDarkNet66.8
      RTMDet2023CSPDarkNet68.4
      MCAI2024ResNet1872.4
    • Table 6. Overall performance comparison of LZ traffic video detection dataset

      View table
      View in Article

      Table 6. Overall performance comparison of LZ traffic video detection dataset

      BaselineRecallPrecisionmAP0.5mAP0.5∶0.95
      YOLOv341.482.652.130.9
      YOLOv548.588.156.738.6
      YOLOv640.47245.231.7
      YOLOv847.461.352.136.7

      YOLOv8-

      Decoder

      49.576.755.137.2
      RT-DETR64.987.976.151.7
      MCAI75.882.880.659.9
    Tools

    Get Citation

    Copy Citation Text

    Zhihao ZHANG, Lixia DU, Yue HOU, Ziwei HAO, Jie YIN. Multi-feature cross UAV image detection algorithm under cross-layer attentional interaction[J]. Optics and Precision Engineering, 2024, 32(24): 3616

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 5, 2024

    Accepted: --

    Published Online: Mar. 11, 2025

    The Author Email: HOU Yue (houyue@mail.lzjtu.cn)

    DOI:10.37188/OPE.20243224.3616

    Topics