International Journal of Extreme Manufacturing, Volume. 4, Issue 1, 15101(2022)
Localized electrodeposition micro additive manufacturing of pure copper microstructures
[1] [1] Richner P, Eghlidi H, Kress S J P, Schmid M, Norris D J and Poulikakos D 2016 Printable nanoscopic metamaterial absorbers and images with diffraction-limited resolution ACS Appl. Mater. Interfaces 8 11690–7
[2] [2] Sundaram M, Kamaraj A B and Lillie G 2018 Experimental study of localized electrochemical deposition of Ni-Cu alloy using a moving anode Proc. CIRP 68 227–31
[3] [3] Farahani R D, Chizari K and Therriault D 2014 Three-dimensional printing of freeform helical microstructures: a review Nanoscale 6 10470–85
[4] [4] Farahani R D, Dalir H, Le Borgne V, Gautier L A, El Khakani M, Lévesque M and Therriault D 2012 Direct-write fabrication of freestanding nanocomposite strain sensors Nanotechnology 23 085502
[5] [5] Ahn B Y, Duoss E B, Motala M J, Guo X Y, Park S-I, Xiong Y J, Yoon J, Nuzzo R G, Rogers J A and Lewis J A 2009 Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes Science 323 1590–3
[6] [6] Skylar-Scott M A, Gunasekaran S and Lewis J A 2016 Laser-assisted direct ink writing of planar and 3D metal architectures Proc. Natl Acad. Sci. USA 113 6137–42
[7] [7] Feinaeugle M, Pohl R, Bor T, Vaneker T and Romer G W 2018 Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films Addit. Manuf. 24 391–9
[8] [8] Miikkulainen V, Leskela M, Ritala M and Puurunen R L 2013 Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends J. Appl. Phys. 113 021301
[9] [9] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31
[10] [10] Wang M, Huang Z, Salut R, Suarez M A, Lu H H, Martin N and Grosjean T 2021 Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves Nano Lett. 21 3410–7
[11] [11] Madden J D and Hunter I W 1996 Three-dimensional microfabrication by localized electrochemical deposition J. Microelectromech. Syst. 5 24–32
[12] [12] Ciou Y J, Hwang Y R and Lin J C 2015 Theoretical modeling and fabrication of two-dimensional microstructures by using micro-anode-guided electroplating with real-time image processing Key Eng. Mater. 656–657 604–14
[13] [13] Lin J C, Chang T K, Yang J H, Chen Y S and Chuang C L 2010 Localized electrochemical deposition of micrometer copper columns by pulse plating Electrochim. Acta 55 1888–94
[14] [14] Brant A and Sundaram M 2016 A novel electrochemical micro additive manufacturing method of overhanging metal parts without reliance on support structures Proc. Manuf. 5 928–43
[15] [15] Xu J K, Ren W F, Lian Z X, Yu P and Yu H D 2020 A review: development of the maskless localized electrochemical deposition technology Int. J. Adv. Manuf. Technol. 110 1731–57
[16] [16] Zhao M, Du L, Wei Z, Du C, Liu X and Ji X 2018 Fabrication of metal microfluidic chip mold with coplanar auxiliary cathode in the electroforming process J. Micromech. Microeng. 29 025002
[17] [17] Sundaram M, Drexelius A and Kamaraj A B 2019 A study on the effect of interelectrode gap in the electrochemical additive manufacturing process Mach. Sci. Technol. 23 232–48
[18] [18] Wang F, Bian H and Xiao Y 2019 Fabrication of micro-sized copper columns using localized electrochemical deposition with a 20 μm diameter micro anode ECS J. Solid State Sci. Technol. 8 223–7
[19] [19] Kamaraj A B and Sundaram M 2019 A mathematical model of the deposition rate and layer height during electrochemical additive manufacturing Int. J. Adv. Manuf. Technol. 102 2367–74
[20] [20] Behroozfar A, Daryadel S, Morsali S R, Moreno S, Baniasadi M, Bernal R A and MinaryaJolandan M 2017 Microscale 3D printing of nanotwinned copper Adv. Mater. 30 1705107
[21] [21] Lin Y-P, Zhang Y and Yu M-F 2018 Parallel process 3D metal microprinting Adv. Mater. Technol. 4 1800393
[22] [22] Ciou Y-J, Hwang Y-R, Lin J-C and Tseng Y-T 2016 Fabrication of 3D microstructure by localized electrochemical deposition with image feedback distance control and five-axis motion platform ECS J. Solid State Sci. Technol. 5 425–32
[23] [23] Hu J and Yu M-F 2010 Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds Science 329 313–6
[24] [24] Dermutz H, Grüter R R, Truong A M, Demkó L, Voros J and Zambelli T 2014 Local polymer replacement for neuron patterning and in situ neurite guidance Langmuir 30 7037–46
[25] [25] Meister A et al 2009 FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond Nano Lett. 9 2501–7
[26] [26] Meister A et al 2009 Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscopy probes Microelectron. Eng. 86 1481–4
[27] [27] Hirt L, Ihle S, Pan Z J, Dorwling-Carter L, Reiser A, Wheeler J M, Spolenak R, Voros J and Zambelli T 2016 Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition Adv. Mater. 28 2311–5
[28] [28] Hirt L, Grüter R R, Berthelot T, Cornut R, Voros J and Zambelli T 2015 Local surface modification via confined electrochemical deposition with FluidFM RSC Adv. 5 84517–22
[29] [29] Zhao J L, Swartz L A, Lin W-F, Schlenoff P S, Frommer J, Schlenoff J B and Liu G-Y 2016 Three-dimensional nanoprinting via scanning probe lithography-delivered layer-by-layer deposition ACS Nano 10 5656–62
[30] [30] Geerlings J, Sarajlic E, Berenschot E J W, Sanders R G P, Siekman M H, Abelmann L and Tas N R 2015 Appl. Phys. Lett. 107 123109
[31] [31] Ossola D, Dorwling-Carter L, Dermutz H, Behr P, Voros J and Zambelli T 2015 Simultaneous scanning ion conductance microscopy and atomic force microscopy with microchanneled cantilevers Phys. Rev. Lett. 115 238103
[32] [32] Dorwling-Carter L, Aramesh M, Forró C, Tiefenauer R F, Shorubalko I, Voros J and Zambelli T 2018 Simultaneous scanning ion conductance and atomic force microscopy with a nanopore: effect of the aperture edge on the ion current images J. Appl. Phys. 124 174902
[33] [33] Lei Y, Zhang X, Xu D, Yu M, Yi Z, Li Z, Sun A, Xu G, Cui P and Guo J 2018 Dynamic “scanning-mode” meniscus confined electrodepositing and micropatterning of individually addressable ultraconductive copper line arrays J. Phys. Chem. Lett. 9 2380–7
[34] [34] Yeo S H and Choo J H 2001 Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition J. Micromech. Microeng. 11 435
[35] [35] Seol S K, Kim D, Lee S, Kim J H, Chang W S and Kim J T 2015 Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures Small 11 3896–902
[36] [36] Yi Z R, Lei Y, Zhang X Y, Chen Y N, Guo J J, Xu G J, Yu M-F and Cui P 2017 Ultralow flexural properties of copper microhelices fabricated via electrodeposition-based three-dimensional direct-writing technology Nanoscale 9 12524–32
[37] [37] Yi Z R, Guo J J, Chen Y N, Zhang H Q, Zhang S, Xu G J, Yu M F and Cui P 2016 Vertical, capacitive microelectromechanical switches produced via direct writing of copper wires Microsyst. Nanoeng. 2 16010
[38] [38] Eliyahu D, Gileadi E, Galun E and Eliaz N 2020 Atomic force microscope-based meniscus-confined three-dimensional electrodeposition Adv. Mater. Technol. 5 1900827
[39] [39] Daryadel S, Behroozfar A, Morsali S R, Moreno S, Baniasadi M, Bykova J, Bernal R A and Minary-Jolandan M 2017 Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures Nano Lett. 18 208–14
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Localized electrodeposition micro additive manufacturing of pure copper microstructures[J]. International Journal of Extreme Manufacturing, 2022, 4(1): 15101
Received: May. 4, 2021
Accepted: --
Published Online: Jan. 22, 2023
The Author Email: (xujinkai2000@163.com)