Acta Photonica Sinica, Volume. 50, Issue 3, 148(2021)

Hyperspectral Image Classification Based on Dense Convolution and Domain Adaptation

Chunhui ZHAO, Tong LI, and Shou FENG*
Author Affiliations
  • School of Information and Communication Engineering, Harbin Engineering University, Harbin150001, China
  • show less
    Figures & Tables(14)
    Example of a DenseNet with four layers (i = 4)
    Subspace feature transformation
    Schematic of the hyperspectral image classification based on DCDA
    Schematic of the dense convolution-based embedding module (The number of convolutional layers is 3)
    Schematic of the discriminator module
    Source and target images in Indiana dataset
    Source and target images in Pavia dataset
    Source and target image spectral curves
    Classification result of target Indiana dataset
    Classification result of target Indiana dataset
    • Table 1. Number of samples in the Indiana dataset and classification accuracy of each category

      View table
      View in Article

      Table 1. Number of samples in the Indiana dataset and classification accuracy of each category

      ClassNameTraining samplesTesting samplesClassification accuracy/%
      1Concrete/Asphalt1802 94253.18
      2Corn-CleanTill1806 02925.01
      3Corn-CleanTill-EW1807 99941.15
      4Orchard1801 56293.90
      5Soybeans-CleanTill1804 79242.29
      6Soybeans-CleanTil-EW1801 63880.72
      7Wheat18010 73982.16
      Total1 26035 701OA=61.60%
    • Table 2. Comparison of classification accuracy in the Indiana dataset

      View table
      View in Article

      Table 2. Comparison of classification accuracy in the Indiana dataset

      Algorithm name

      OA/%

      AA/%

      κ

      TSVM

      39.19

      33.82

      0.27

      SD-MTJDL-SLR

      51.34

      43.51

      0.38

      ED-DMM-UDA

      56.78

      51.68

      0.46

      DCDA

      61.60

      61.79

      0.53

    • Table 3. Number of samples in the Pavia dataset and classification accuracy of each category

      View table
      View in Article

      Table 3. Number of samples in the Pavia dataset and classification accuracy of each category

      ClassNameTraining samplesTesting samplesClassification accuracy/%
      1Trees1802 42492.14
      2Asphalt1801 70494.36
      3Paking lot180287100
      4Bitumen18068581.35
      5Meadow1801 25195.78
      6Soil1801 47581.99
      Total1 0807 826OA=90.63%
    • Table 4. Comparison of classification accuracy in the Pavia dataset

      View table
      View in Article

      Table 4. Comparison of classification accuracy in the Pavia dataset

      Algorithm name

      OA/%

      AA/%

      κ

      TSVM

      61.21

      61.50

      0.53

      SD-MTJDL-SLR

      83.52

      81.30

      0.79

      ED-DMM-UDA

      90.34

      87.87

      0.88

      DCDA

      90.63

      90.08

      0.88

    Tools

    Get Citation

    Copy Citation Text

    Chunhui ZHAO, Tong LI, Shou FENG. Hyperspectral Image Classification Based on Dense Convolution and Domain Adaptation[J]. Acta Photonica Sinica, 2021, 50(3): 148

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: --

    Accepted: --

    Published Online: Jul. 13, 2021

    The Author Email: FENG Shou (fengshou@hrbeu.edu.cn)

    DOI:10.3788/gzxb20215003.0310001

    Topics