Laser & Optoelectronics Progress, Volume. 50, Issue 8, 80006(2013)

Progress of 1.6 μm Region Single-Frequency Lasers

Wang Ran* and Gao Chunqing
Author Affiliations
  • [in Chinese]
  • show less
    References(50)

    [2] [2] Xinlu Zhang, Youlun Ju, Yuezhu Wang. Diode-pumped single frequency Tm,HoYLF laser at room temperature [J]. Chin Opt Lett, 2005, 3(8): 463-465.

    [3] [3] F Song, L J Luo, X C Yu, et al.. Intense 1.54 μm fluorescence of Er3+/Yb3+ co-doped phosphate glass and the three-photon phenomenon of near infrared upconversion luminescence [J]. J Appl Phys, 2010, 107(3): 033110.

    [5] [5] T Sasaki, T Kojima, A Yokotani, et al.. Single-longitudinal-mode operation and second-harmonic generation of Nd:YVO4 microchip lasers [J]. Opt Lett, 1991, 16(21): 1665-1667.

    [6] [6] G L Bourdet, G Lescroart, R Muller. Spectral characteristics of 2 μm microchip TmYVO4 and Tm,HoYLF lasers [J]. Opt Commun, 1998, 150(1): 141-146.

    [7] [7] T Y Fan, J Ochoa. Tunable single-frequency Yb:YAG Laser with 1-W output power using twisted-mode technique [J]. IEEE Photon Technol Lett, 1995, 7(10): 1137-1138.

    [8] [8] E Wu, H Pan, S Zhang, et al.. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal [J]. Appl Phys B, 2005, 80(4): 459-462.

    [9] [9] C Gao, R Wang, Z Lin, et al.. 2 μm single-frequency Tm:YAG laser generated from a diode-pumped L-shaped twisted mode cavity[J]. Appl Phys B, 2012, 107(1): 67-70.

    [10] [10] C P Hale, J W Hobbs, P Gatt. Broadly tunable master/local oscillator lasers for advanced laser radar applications [C]. SPIE, 2003, 5086: 253-263.

    [11] [11] Wu Xia, Yang Suhui, Chen Ying, et al.. Tunable two-frequency solid-state laser with coupled-cavity configuration [J]. Acta Optica Sinica, 2012, 32(3): 0314003.

    [12] [12] C Pedersen, P L Hansen, T Skettrup, et al.. Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators [J]. Opt Lett, 1995, 20(12): 1389-1391.

    [13] [13] Xi Wenqiang, Zhao Jingyun, Zhang Kuanshou. A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation [J]. Chin Phys Lett, 2005, 22(5): 1144-1147.

    [15] [15] Zhao Weifang, Hou Wei, Guo Lin, et al.. 7.5 W Nd:GdVO4 single-frequency ring laser [J]. Acta Optica Sinica, 2011, 31(5): 0514003.

    [16] [16] T J Kane, R L Byer. Monolithic, unidirectional single-mode Nd:YAG ring laser [J]. Opt Lett, 1985, 10(2): 65-67.

    [17] [17] I Freitag, I Krpke, H Welling. Electrooptically fast tunable miniature diode-pumped Nd:YAG ring laser [C]. Advanced Solid State Lasers, 1993. LM10.

    [18] [18] I Freitag, A Tünnermann, H Welling. Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts [J]. Opt Commun, 1995, 115(5): 511-515.

    [19] [19] P Burdack, T Fox, M Bode, et al.. 1 W of stable single-frequency output at 1.03 μm from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature [J]. Opt Express, 2006, 14(10): 4363-4367.

    [20] [20] B Q Yao, X M Duan, D Fang, et al.. 7.3 W of single-frequency output power at 2.09 μm from an HoYAG monolithic nonplanar ring laser [J]. Opt Lett, 2008, 33(18): 2161-2163.

    [21] [21] Lu Yuanfu, Zong Nan, Bo Yong, et al.. LD pumped monolithic non-planar ring resonator tunable single frequency lasers [J]. Acta Optica Sinica, 2011, 31(s1): s100311.

    [22] [22] L Wang, C Q Gao, Mingwei Gao, et al.. Resonantly pumped monolithic nonplanar HoYAG ring laser with high-power single-frequency laser output at 2122 nm [J]. Opt Express, 2013, 21(8): 9541-9546.

    [23] [23] American National Standards Institute. American National Standard for Safe Use of Lasers [S]. ANSI Z136.1, 2007.

    [24] [24] Zhang Kuanshou, Li Peng, Liu Jianli. Continuous-wave singly resonant optical parametric oscillator [J]. J Shanxi University, 2012, 35(2): 243-247.

    [25] [25] A Fix, U Büdenbender, C U Wirth, et al.. Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4 [C]. SPIE, 2011, 8182: 818206.

    [26] [26] Liu Jianli, Liu Qin, Li Hong, et al.. Low noise, continuous-wave single-frequency 1.5-μm laser generated by a singly resonant optical parametric oscillator [J]. Chin Phys B, 2011, 20(11): 114215.

    [27] [27] Liu Jianli, Liu Qin, Li Xiaoqing, et al.. Experimental investigation of continuous-wave single-frequency 1.5 μm intracavity singly resonant optical parametric oscillator [J]. J Shanxi University, 2011, 34(2): 219-222.

    [28] [28] F Song, S J Liu, Z H Wu, et al.. Determination of the thermal loading in laser diode pumped erbium ytterbium codoped phosphate glass microchip laser [J]. J Opt Soc Am B, 2007, 24(9): 2327-2332.

    [29] [29] Yin Ke, Jiangming Xu, Leng Jinyong, et al.. Research progress of high power fiber Raman lasers [J]. Laser & Optoelectronics Progress, 2012, 49(1): 010004.

    [30] [30] S H Chang, I K Hwang, B Y Kim. Widely tunable single-frequency Er-doped fiber laser with linear cavity [J]. IEEE Photon Technol Lett, 2000, 13(4): 287-289.

    [31] [31] Zhao Ming, Guo Yubin, Wang Tianshu, et al.. Short cavity single-frequency all-fiber Er/Yb co-doped laser [J]. Frontiers of Optoelectronics in China, 2009, 2(1): 81-85.

    [32] [32] S H Xu, Z M Yang, T Liu, et al.. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm [J]. Opt Express, 2010, 18(2): 1249-1254.

    [33] [33] Yang Fei, Chen Dijun, Pan Zhengqing, et al.. Short linear cavity single-frequency fiber laser with active frequency stabilization by fiber Bragg grating [J]. Chinese J Lasers, 2012, 39(9): 0902005.

    [34] [34] C Alegria, Y Jeong, C Codemard, et al.. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber [J]. IEEE Photon Technol Lett, 2004, 16(8): 1825-1827.

    [35] [35] A J McGrath, J Munch, G Smith, et al.. Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing [J]. Appl Opt, 1998, 37(24): 5706-5709.

    [36] [36] S Taccheo, G Sorbello, P Laporta, et al.. 230-mW diode-pumped single-frequency ErYb laser at 1.5 μm [J]. IEEE Photon Technol Lett, 2001, 13(1): 19-21.

    [37] [37] T Yanagisawa, K Asaka, K Hamazu, et al.. 11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er3+/Yb3+phosphate glass laser [J]. Opt Lett, 2001, 26(16): 1262-1264.

    [38] [38] Y Li, J Feng, P Li, et al.. 400 mW low noise continuous-wave single-frequency Er,YbYAl3 laser at 1.55 μm [J]. Opt Express, 2013, 21(5): 6082-6090.

    [39] [39] R C Stoneman, S W Henderson. High-power eyesafe laser transmitter for microDoppler coherent lidar [C]. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2001, 1: 342-343.

    [40] [40] R C Stoneman, R Hartman, A I Malm, et al.. Coherent laser radar using eyesafe YAG laser transmitters [C]. SPIE, 2005, 5791: 167-174.

    [41] [41] R C Stoneman, R Hartman, E A Schneider, et al.. Eyesafe diffraction limited single frequency 1 ns pulsewidth Er:YAG laser transmitter [C]. SPIE, 2007, 6552: 65520H.

    [42] [42] J W Kim, J K Sahu, W A Clarkson. Efficient single axial mode operation of an Er:YAG ring laser at 1645 nm [C]. Quantum Electronics and Laser Science, 2008. CTuAA4.

    [43] [43] N W H Chang, D J Hosken, J Munch, et al.. Stable, single frequency Er:YAG lasers at 1.6 μm [J]. IEEE J Quantum Electron, 2010, 46(7): 1039-1042.

    [44] [44] D W Chen, P M Belden, T S Rose, et al.. Narrowband Er:YAG nonplanar ring oscillator at 1645 nm [J]. Opt Lett, 2011, 36(7): 1197-1199.

    [45] [45] B Q Yao, X L Liu, L X Yu, et al.. Resonantly pumped single frequency Er:YAG laser at 1645 nm [J]. Laser Phys, 2012, 22(2): 403-405.

    [46] [46] L N Zhu, C Q Gao, R Wang, et al.. Resonantly pumped 1.645 μm single longitudinal mode Er:YAG laser with intracavity etalons [J]. Appl Opt, 2012, 51(10): 1616-1618.

    [47] [47] L N Zhu, C Q Gao, R Wang, et al.. Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output [J]. Laser Phys Lett, 2012, 9(9): 674-677.

    [48] [48] C Q Gao, L N Zhu, R Wang, et al.. 6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er:YAG non-planar ring oscillator [J]. Opt Lett, 2012, 37(11): 1859-1861.

    [49] [49] R Wang, C Q Gao, Y Zheng, et al.. Resonantly pumped 1645 nm Er:YAG non-planar ring oscillator with 10.5 W single frequency output [J]. IEEE Photon Technol Lett, 2013, 25(10): 955-957.

    [50] [50] Y Zheng, C Q Gao, R Wang, et al.. Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode [J]. Opt Lett, 2013, 38(5): 784-786.

    CLP Journals

    [1] Guo Yong, Qiu Qi, Wang Yunxiang, Wang Zhiyong, Su Jun, Shi Shuangjin, Yu Zhenfang. Research on Stability of Fabry-Perot Cavity Based on PDH[J]. Chinese Journal of Lasers, 2016, 43(4): 402003

    [2] Li Menglong, Gao Long, Shi Wenzong, Feng Wen, Yan Fanjiang, Tao Yuliang. Progress in All-Solid-State Single-Frequency Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80003

    [3] Lin Hong, Zhou Chuanlin, Zhao Na, Huang Panli. Wavelength Choice for Infrared Laser Based on Atmospheric CO2 Concentration Wide Spectrum Measurement[J]. Laser & Optoelectronics Progress, 2015, 52(12): 120102

    [4] Li Lu, Guo Pan, Zhang Yinchao, Chen Siying, Chen He. Application of Smoothness Prior Aproach for Coherent Doppler Wind Lidar[J]. Acta Optica Sinica, 2015, 35(7): 728001

    Tools

    Get Citation

    Copy Citation Text

    Wang Ran, Gao Chunqing. Progress of 1.6 μm Region Single-Frequency Lasers[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 3, 2013

    Accepted: --

    Published Online: Aug. 8, 2013

    The Author Email: Ran Wang (hellowangran@bit.edu.cn)

    DOI:10.3788/lop50.080006

    Topics