Chinese Journal of Lasers, Volume. 50, Issue 15, 1507107(2023)

Super‐Resolution Reconstruction of OCT Image Based on Pyramid Long‐Range Transformer

Yanqi Lu, Minghui Chen*, Kaibo Qin, Yuquan Wu, Zhijie Yin, and Zhengqi Yang
Author Affiliations
  • Shanghai Engineering Research Center of Interventional Medical Device, the Ministry of Education of Medical Optical Engineering Center, School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    References(38)

    [1] Rebolleda G, Diez-Alvarez L, Casado A et al. OCT: new perspectives in neuro-ophthalmology[J]. Saudi Journal of Ophthalmology, 29, 9-25(2015).

    [2] Wang C, Zhou Q, Chen Y J et al. Axial eye length measurement system based on low coherence interferometry[J]. Chinese Journal of Lasers, 49, 0507106(2022).

    [3] Das V, Dandapat S, Bora P K. Unsupervised super-resolution of OCT images using generative adversarial network for improved age-related macular degeneration diagnosis[J]. IEEE Sensors Journal, 20, 8746-8756(2020).

    [4] Kobayashi M, Hanafusa H, Takada K et al. Polarization-independent interferometric optical-time-domain reflectometer[J]. Journal of Lightwave Technology, 9, 623-628(1991).

    [5] de Boer J F, Tearney G J, Bouma B E. Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands[P].

    [6] Klein T, André R, Wieser W et al. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT[J]. Biomedical Optics Express, 4, 619-634(2013).

    [7] Pircher M, Götzinger E, Leitgeb R A et al. Speckle reduction in optical coherence tomography by frequency compounding[J]. Journal of Biomedical Optics, 8, 565-569(2003).

    [8] Bajraszewski T, Wojtkowski M, Szkulmowski M et al. Improved spectral optical coherence tomography using optical frequency comb[J]. Optics Express, 16, 4163-4176(2008).

    [9] Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography[J]. Journal of biomedical optics, 4, 95-105(1999).

    [10] Ozcan A, Bilenca A, Desjardins A E et al. Speckle reduction in optical coherence tomography images using digital filtering[J]. Journal of the Optical Society of America A, 24, 1901-1910(2007).

    [11] Zhao W D, Lu H C. Medical image fusion and denoising with alternating sequential filter and adaptive fractional order total variation[J]. IEEE Transactions on Instrumentation and Measurement, 66, 2283-2294(2017).

    [12] Adabi S, Rashedi E, Clayton A et al. Learnable despeckling framework for optical coherence tomography images[J]. Journal of Biomedical Optics, 23, 016013(2018).

    [13] Zhang A Q, Xi J F, Sun J T et al. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images[J]. Biomedical Optics Express, 8, 1721-1730(2017).

    [14] Abbasi A, Monadjemi A, Fang L Y et al. Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation[J]. Journal of Biomedical Optics, 23, 036011(2018).

    [15] Shah Z H, Müller M, Wang T C et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 9, B168-B181(2021).

    [16] Ke S T, Chen M H, Zheng Z X et al. Super-resolution reconstruction of optical coherence tomography retinal images by generating adversarial network[J]. Chinese Journal of Lasers, 49, 1507203(2022).

    [17] Huang Y Q, Lu Z X, Shao Z M et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics Express, 27, 12289-12307(2019).

    [18] Ma C, Rao Y M, Cheng Y A et al. Structure-preserving super resolution with gradient guidance[C], 7766-7775(2020).

    [19] Qiu B, You Y F, Huang Z Y et al. N2NSR-OCT: simultaneous denoising and super-resolution in optical coherence tomography images using semisupervised deep learning[J]. Journal of Biophotonics, 14, e202000282(2021).

    [20] Das V, Dandapat S, Bora P K. A diagnostic information based framework for super-resolution and quality assessment of retinal OCT images[J]. Computerized Medical Imaging and Graphics, 94, 101997(2021).

    [21] Zhang W W, Yang D W, Cheung C Y et al. Frequency-aware inverse-consistent deep learning for OCT-angiogram super-resolution[M]. Wang L, Dou Q, Fletcher P T, et al. Medical image comp uting and computer-assisted intervention-MICCAI 2022. Lecture notes in computer science, 13432, 645-655(2022).

    [22] Huang Y Q. Research on OCT image restoration based on deep learning[D](2021).

    [23] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 6000-6010(2017).

    [24] Wang Z D, Cun X D, Bao J M et al. Uformer: a general U-shaped transformer for image restoration[C], 17662-17672(2022).

    [25] Liang T F, Jin Y, Li Y D et al. EDCNN: edge enhancement-based densely connected network with compound loss for low-dose CT denoising[C], 193-198(2021).

    [27] Zhang X D, Zeng H, Guo S et al. Efficient long-range attention network for image super-resolution[M]. Avidan S, Brostow G,Cissé M, et al. Computer vision-ECCV 2022. Lecture notes in computer science, 13677, 649-667(2022).

    [28] Wu B C, Wan A, Yue X Y et al. Shift: a zero FLOP, zero parameter alternative to spatial convolutions[C], 9127-9135(2018).

    [29] Howard A, Sandler M, Chen B et al. Searching for MobileNetV3[C], 1314-1324(2020).

    [31] He K M, Zhang X Y, Ren S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [32] Grauman K, Darrell T. The pyramid match kernel: discriminative classification with sets of image features[C], 1458-1465(2005).

    [33] Wang X T, Xie L B, Dong C et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C], 1905-1914(2021).

    [34] Yoo J, Ahn N, Sohn K A. Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy[C], 8372-8381(2020).

    [35] Ledig C, Theis L, Huszár F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    [36] Zhang Y L, Li K P, Li K et al. Image super-resolution using very deep residual channel attention networks[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 294-310(2018).

    [37] Chen H T, Wang Y H, Guo T Y et al. Pre-trained image processing transformer[C](2021).

    [38] Liang J Y, Cao J Z, Sun G L et al. SwinIR: image restoration using swin transformer[C](2021).

    Tools

    Get Citation

    Copy Citation Text

    Yanqi Lu, Minghui Chen, Kaibo Qin, Yuquan Wu, Zhijie Yin, Zhengqi Yang. Super‐Resolution Reconstruction of OCT Image Based on Pyramid Long‐Range Transformer[J]. Chinese Journal of Lasers, 2023, 50(15): 1507107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Mar. 16, 2023

    Accepted: Apr. 23, 2023

    Published Online: Aug. 8, 2023

    The Author Email: Chen Minghui (cmhui.43@163.com)

    DOI:10.3788/CJL230624

    Topics