Laser & Optoelectronics Progress, Volume. 60, Issue 15, 1500004(2023)

Research Progress in Surface Modification Engineering and Application of PbSe Quantum Dots

Dan Yang, Dengkui Wang*, Xuan Fang**, Dan Fang, Li Yang, Chao Xiang, Jinhua Li, and Xiaohua Wang
Author Affiliations
  • State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, Jinlin, China
  • show less
    References(98)

    [1] Ekimov A I, Efros A L, Onushchenko A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Communications, 56, 921-924(1985).

    [2] Liu H C, Zhong H Y, Zheng F K et al. Near-infrared lead chalcogenide quantum dots: synthesis and applications in light emitting diodes[J]. Chinese Physics B, 28, 128504(2019).

    [3] Lu H P, Carroll G M, Neale N R et al. Infrared quantum dots: progress, challenges, and opportunities[J]. ACS Nano, 13, 939-953(2019).

    [4] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 115, 8706-8715(1993).

    [5] Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion[J]. Physical Review Letters, 92, 186601(2004).

    [6] Ellingson R J, Beard M C, Johnson J C et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots[J]. Nano Letters, 5, 865-871(2005).

    [7] Zhang Z, Chen Z, Yuan L et al. A new passivation route leading to over 8% efficient PbSe quantum-dot solar cells via direct ion exchange with perovskite nanocrystals[J]. Advanced Materials, 29, 1703214(2017).

    [8] Wang W, Gu Q, Chen Q P et al. Investigation of PbSe quantum dot-doped glass fibers with broadband mid-infrared emission[J]. Chinese Journal of Lasers, 49, 0101013(2022).

    [9] Wehrenberg B L, Wang C J, Guyot-Sionnest P. Interband and intraband optical studies of PbSe colloidal quantum dots[J]. The Journal of Physical Chemistry B, 106, 10634-10640(2002).

    [10] Zhang X L, Wang L, Li D et al. PbSe based core/shell quantum dots: from colloidal synthesis to optoelectronic application[J]. Chinese Journal of Luminescence, 41, 631-645(2020).

    [11] Yu W W, Falkner J C, Shih B S et al. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chemistry of Materials, 16, 3318-3322(2004).

    [12] Cheng C, Bo J F, Yan J H et al. Experimental realization of a PbSe-quantum-dot doped fiber laser[J]. IEEE Photonics Technology Letters, 25, 572-575(2013).

    [13] Hu W J, Gao S, Prasad P N et al. Employing photoassisted ligand exchange technique in layered quantum dot LEDs[J]. Journal of Nanomaterials, 2012, 719169(2012).

    [14] Hu W J, Henderson R, Zhang Y et al. Near-infrared quantum dot light emitting diodes employing electron transport nanocrystals in a layered architecture[J]. Nanotechnology, 23, 375202(2012).

    [15] Hyun B R, Marus M, Zhong H Y et al. Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals[J]. Chinese Physics B, 29, 018503(2019).

    [16] Choi J J, Lim Y F, Santiago-Berrios M B et al. PbSe nanocrystal excitonic solar cells[J]. Nano Letters, 9, 3749-3755(2009).

    [17] Semonin O E, Luther J M, Choi S et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell[J]. Science, 334, 1530-1533(2011).

    [18] Zhang Z L, Chen Z H, Zhang J B et al. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer[J]. Advanced Energy Materials, 7, 1601773(2017).

    [19] Dolatyari M, Rostami A, Mathur S et al. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photodetectors[J]. Journal of Materials Chemistry C, 7, 5658-5669(2019).

    [20] Fu C J, Wang H W, Song T J et al. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector[J]. Nanotechnology, 27, 065201(2016).

    [21] Sarasqueta G, Choudhury K R, So F. Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal infrared photodetectors[J]. Chemistry of Materials, 22, 3496-3501(2010).

    [22] Sarasqueta G, Choudhury K R, Subbiah J et al. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors[J]. Advanced Functional Materials, 21, 167-171(2011).

    [23] Sykora M, Koposov A Y, McGuire J A et al. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals[J]. ACS Nano, 4, 2021-2034(2010).

    [24] Bae W K, Joo J, Padilha L A et al. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine[J]. Journal of the American Chemical Society, 134, 20160-20168(2012).

    [25] Mi S H, Young W J, Sohee J et al. Oxygen aided photoresponse enhancement of air-stable PbSe quantum dot based photoconductors[J]. Optical Materials Express, 7, 2905-2912(2017).

    [26] Woo J Y, Ko J H, Song J H et al. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe(100)[J]. Journal of the American Chemical Society, 136, 8883-8886(2014).

    [27] Lin Q L, Yun H J, Liu W Y et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films[J]. Journal of the American Chemical Society, 139, 6644-6653(2017).

    [28] Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 85, 3533-3539(1963).

    [29] Moreels I, Fritzinger B, Martins J C et al. Surface chemistry of colloidal PbSe nanocrystals[J]. Journal of the American Chemical Society, 130, 15081-15086(2008).

    [30] Shrestha A, Batmunkh M, Tricoli A et al. Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis ligand exchange, and applications in solar cells[J]. Angewandte Chemie, 58, 5202-5224(2019).

    [31] Luther J M, Law M, Song Q et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol[J]. ACS Nano, 2, 271-280(2008).

    [32] Liu Y, Gibbs M, Puthussery J et al. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids[J]. Nano Letters, 10, 1960-1969(2010).

    [33] Zarghami M H, Liu Y, Gibbs M et al. P-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids[J]. ACS Nano, 4, 2475-2485(2010).

    [34] Talapin D V, Murray C B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors[J]. Science, 310, 86-89(2005).

    [35] Gao Y N, Aerts M, Sandeep C S S et al. Photoconductivity of PbSe quantum-dot solids: dependence on ligand anchor group and length[J]. ACS Nano, 6, 9606-9614(2012).

    [36] Law M, Luther J M, Song Q et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines[J]. Journal of the American Chemical Society, 130, 5974-5985(2008).

    [37] Koleilat G I, Levina L, Shukla H et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots[J]. ACS Nano, 2, 833-840(2008).

    [38] Scheele M, Engel J H, Ferry V E et al. Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids[J]. ACS Nano, 7, 6774-6781(2013).

    [39] Kovalenko M V, Scheele M, Talapin D V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands[J]. Science, 324, 1417-1420(2009).

    [40] Lee J S, Kovalenko M V, Huang J et al. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays[J]. Nature Nanotechnology, 6, 348-352(2011).

    [41] Fafarman A T, Koh W K, Diroll B T et al. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids[J]. Journal of the American Chemical Society, 133, 15753-15761(2011).

    [42] Nag A, Kovalenko M V, Lee J S et al. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands[J]. Journal of the American Chemical Society, 133, 10612-10620(2011).

    [43] Liu Y, Gibbs M, Perkins C L et al. Robust, functional nanocrystal solids by infilling with atomic layer deposition[J]. Nano Letters, 11, 5349-5355(2011).

    [44] Liu Y, Tolentino J, Gibbs M et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V-1 s-1[J]. Nano Letters, 13, 1578-1587(2013).

    [45] Giansante C, Infante I. Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective[J]. The Journal of Physical Chemistry Letters, 8, 5209-5215(2017).

    [46] Balazs D M, Nugraha M I, Bisri S Z et al. Reducing charge trapping in PbS colloidal quantum dot solids[J]. Applied Physics Letters, 104, 112104(2014).

    [47] Chappell H E, Hughes B K, Beard M C et al. Emission quenching in PbSe quantum dot arrays by short-term air exposure[J]. The Journal of Physical Chemistry Letters, 2, 889-893(2011).

    [48] Yang X Y, Ren F Q, Wang Y et al. Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes[J]. Scientific Reports, 7, 14741(2017).

    [49] Kim S J, Kim W J, Sahoo Y et al. Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor[J]. Applied Physics Letters, 92, 031107(2008).

    [50] Konstantatos G, Sargent E H. PbS colloidal quantum dot photoconductive photodetectors: transport, traps, and gain[J]. Applied Physics Letters, 91, 173505(2007).

    [51] Choi H, Ko J H, Kim Y H et al. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability[J]. Journal of the American Chemical Society, 135, 5278-5281(2013).

    [52] Hughes B K, Ruddy D A, Blackburn J L et al. Control of PbSe quantum dot surface chemistry and photophysics using an alkylselenide ligand[J]. ACS Nano, 6, 5498-5506(2012).

    [53] Böhm M L, Jellicoe T C, Rivett J P H et al. Size and energy level tuning of quantum dot solids via a hybrid ligand complex[J]. The Journal of Physical Chemistry Letters, 6, 3510-3514(2015).

    [54] Soreni-Harari M, Yaacobi-Gross N, Steiner D et al. Tuning energetic levels in nanocrystal quantum dots through surface manipulations[J]. Nano Letters, 8, 678-684(2008).

    [55] Munro A M, Zacher B, Graham A et al. Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand[J]. ACS Applied Materials & Interfaces, 2, 863-869(2010).

    [56] Grimaldi G, van den Brom M J, du Fossé I et al. Engineering the band alignment in QD heterojunction films via ligand exchange[J]. The Journal of Physical Chemistry C, 123, 29599-29608(2019).

    [57] Brown P R, Kim D, Lunt R R et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange[J]. ACS Nano, 8, 5863-5872(2014).

    [58] Crisp R W, Kroupa D M, Marshall A R et al. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells[J]. Scientific Reports, 5, 9945(2015).

    [59] Reiss P, Protiere M, Li L. Core/Shell semiconductor nanocrystals[J]. Small, 5, 154-168(2009).

    [60] Pietryga J M, Werder D J, Williams D J et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission[J]. Journal of the American Chemical Society, 130, 4879-4885(2008).

    [61] Zaiats G, Shapiro A, Yanover D et al. Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots[J]. The Journal of Physical Chemistry Letters, 6, 2444-2448(2015).

    [62] Zhang Y, Dai Q Q, Li X B et al. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence[J]. Langmuir, 27, 9583-9587(2011).

    [63] Zhang Y, Dai Q Q, Li X B et al. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals[J]. Journal of Nanoparticle Research, 13, 3721-3729(2011).

    [64] Sashchiuk A, Langof L, Chaim R et al. Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals[J]. Journal of Crystal Growth, 240, 431-438(2002).

    [65] Yanover D, Vaxenburg R, Tilchin J et al. Significance of small-sized PbSe/PbS core/shell colloidal quantum dots for optoelectronic applications[J]. The Journal of Physical Chemistry C, 118, 17001-17009(2014).

    [66] Rubin-Brusilovski A, Jang Y, Shapiro A et al. Influence of interfacial strain on optical properties of PbSe/PbS colloidal quantum dots[J]. Chemistry of Materials, 28, 9056-9063(2016).

    [67] Dai Q Q, Wang Y N, Zhang Y et al. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure[J]. Langmuir, 25, 12320-12324(2009).

    [68] Shan J, Veggel F C J M V, Raudsepp M et al. Highly photo-stable type-I PbSe/SnSe and PbSe/SnS colloidal core/shell quantum dots[J]. TechConnect Briefs, 3, 125-128(2006).

    [69] Senthil A, Reymatias M V, Alas G J et al. Synthesis and characterization of near-infrared PbSe/SnS colloidal core-shell quantum dots[J]. Proceedings of SPIE, 11255, 1125508(2020).

    [70] Zhang Y, Dai Q Q, Li X B et al. Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission[J]. Nanoscale Research Letters, 5, 1279-1283(2010).

    [71] Zaiats G, Yanover D, Vaxenburg R et al. PbSe/CdSe thin-shell colloidal quantum dots[J]. Zeitschrift Für Physikalische Chemie, 229, 3-21(2014).

    [72] Hanson C J, Hartmann N F, Singh A et al. Giant PbSe/CdSe/CdSe quantum dots: crystal-structure-defined ultrastable near-infrared photoluminescence from single nanocrystals[J]. Journal of the American Chemical Society, 139, 11081-11088(2017).

    [73] Schaller R D, Petruska M A, Klimov V I. Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals[J]. The Journal of Physical Chemistry B, 107, 13765-13768(2003).

    [74] Klimov V I, Ivanov S A, Nanda J et al. Single-exciton optical gain in semiconductor nanocrystals[J]. Nature, 447, 441-446(2007).

    [75] Cirloganu C M, Padilha L A, Lin Q L et al. Enhanced carrier multiplication in engineered quasi-type-Ⅱ quantum dots[J]. Nature Communications, 5, 4148(2014).

    [76] Lystrom L, Tamukong P, Mihaylov D et al. Phonon-driven energy relaxation in PbS/CdS and PbSe/CdSe core/shell quantum dots[J]. The Journal of Physical Chemistry Letters, 11, 4269-4278(2020).

    [77] Semonin O E, Luther J M, Beard M C. Quantum dots for next-generation photovoltaics[J]. Materials Today, 15, 508-515(2012).

    [78] Weidman M C, Yager K G, Tisdale W A. Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange[J]. Chemistry of Materials, 27, 474-482(2015).

    [79] Zhang Z L, Yang J F, Wen X M et al. Effect of halide treatments on PbSe quantum dot thin films: stability, hot carrier lifetime and application to photovoltaics[J]. The Journal of Physical Chemistry C, 119, 24149-24155(2015).

    [80] Zhang J B, Gao J B, Church C P et al. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere[J]. Nano Letters, 14, 6010-6015(2014).

    [81] Ahmad W, He J G, Liu Z T et al. Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency[J]. Advanced Materials, 31, 1900593(2019).

    [82] Liu S S, Xiong K, Wang K et al. Efficiently passivated PbSe quantum dot solids for infrared photovoltaics[J]. ACS Nano, 15, 3376-3386(2021).

    [83] Etgar L, Yanover D, Čapek R K et al. Core/shell PbSe/PbS QDs TiO2 heterojunction solar cell[J]. Advanced Functional Materials, 23, 2736-2741(2013).

    [84] Choi H, Song J H, Jang J et al. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control[J]. Nanoscale, 7, 17473-17481(2015).

    [85] Wang P, Wang T Y, Wang H L et al. Based on graphene electrodes PbSe/CdSe core-shell quantum dots battery[J]. Applied Mechanics and Materials, 737, 88-91(2015).

    [86] Wang T Y, Wang P, Wang H L et al. Solar cells of the inorganic materials based on PbSe/CdSe core/shell nanocrystals[J]. Applied Mechanics and Materials, 737, 119-122(2015).

    [87] Kim S, Marshall A R, Kroupa D M et al. Air-stable and efficient PbSe quantum-dot solar cells based upon ZnSe to PbSe cation-exchanged quantum dots[J]. ACS Nano, 9, 8157-8164(2015).

    [88] Zhang Y H, Ding C, Wu G H et al. Air stable PbSe colloidal quantum dot heterojunction solar cells: ligand-dependent exciton dissociation, recombination, photovoltaic property, and stability[J]. The Journal of Physical Chemistry C, 120, 28509-28518(2016).

    [89] Chen Z H, Zhang Z L, Yang J F et al. Improving carrier extraction in a PbSe quantum dot solar cell by introducing a solution-processed antimony-doped SnO2 buffer layer[J]. Journal of Materials Chemistry C, 6, 9861-9866(2018).

    [90] Hu L, Zhang Z L, Patterson R J et al. PbSe quantum dot passivated via mixed halide perovskite nanocrystals for solar cells with over 9% efficiency[J]. Solar RRL, 2, 1800234(2018).

    [91] Hu L, Geng X, Singh S et al. Synergistic effect of electron transport layer and colloidal quantum dot solid enable PbSe quantum dot solar cell achieving over 10 % efficiency[J]. Nano Energy, 64, 103922(2019).

    [92] Jiang Z Y, Hu W J, Mo C et al. Ultra-sensitive tandem colloidal quantum-dot photodetectors[J]. Nanoscale, 7, 16195-16199(2015).

    [93] Zhu T, Zheng L Y, Yao X et al. Ultrasensitive solution-processed broadband PbSe photodetectors through photomultiplication effect[J]. ACS Applied Materials & Interfaces, 11, 9205-9212(2019).

    [94] Peng M F, Liu Y, Li F et al. Room-temperature direct synthesis of PbSe quantum dot inks for high-detectivity near-infrared photodetectors[J]. ACS Applied Materials & Interfaces, 13, 51198-51204(2021).

    [95] Gong X W, Yang Z Y, Walters G et al. Highly efficient quantum dot near-infrared light-emitting diodes[J]. Nature Photonics, 10, 253-257(2016).

    [96] Sun L F, Choi J J, Stachnik D et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnology, 7, 369-373(2012).

    [97] Zeng F J, Tan Y Q, Zhang X M et al. Synthesis of Sn-doped CsPbBr3 quantum dot and research on its photoelectric properties[J]. Acta Optica Sinica, 41, 0416001(2021).

    [98] Kigel A, Brumer M, Sashchiuk A et al. Synthesis, characterization and the use of PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers[J]. Proceedings of SPIE, 5929, 59290F(2005).

    Tools

    Get Citation

    Copy Citation Text

    Dan Yang, Dengkui Wang, Xuan Fang, Dan Fang, Li Yang, Chao Xiang, Jinhua Li, Xiaohua Wang. Research Progress in Surface Modification Engineering and Application of PbSe Quantum Dots[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 16, 2022

    Accepted: Aug. 4, 2022

    Published Online: Aug. 11, 2023

    The Author Email: Wang Dengkui (wangdk@cust.edu.cn), Fang Xuan (fangxuan110@126.com)

    DOI:10.3788/LOP221857

    Topics