Laser & Optoelectronics Progress, Volume. 50, Issue 8, 80009(2013)

Research Progress on Gradient Meta-Surfaces

Sun Shulin*, He Qiong, Xiao Shiyi, Xu Qin, Li Xin, Qu Che, and Zhou Lei
Author Affiliations
  • [in Chinese]
  • show less
    References(55)

    [1] [1] J B Pendry, A J Holden, W J Stewart, et al.. Extremely low frequency plasmons in metallic mesostructures [J]. Phys Rev Lett, 1996, 76(25): 4773-4776.

    [2] [2] J B Pendry, A J Holden, D J Robbins, et al.. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Trans Microwave Theory Tech, 1999, 47(11): 2075-2084.

    [3] [3] J B Pendry. Negative refraction [J]. Contemp Phys, 2004, 45(3): 191-202.

    [4] [4] J B Pendry. Negative refraction makes a perfect lens [J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

    [5] [5] D R Smith, Willie J Padilla, D C Vier, et al.. Composite medium with simultaneously negative permeability and permittivity [J]. Phys Rev Lett, 2000, 84(18): 4184-4187.

    [6] [6] R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79.

    [7] [7] J Valentine, S Zhang, T Zentgraf, et al.. Three-dimensional optical metamaterial with a negative refractive index [J]. Nature, 2008, 455(7211): 376-379.

    [8] [8] U Leonhardt. Optical conformal mapping [J]. Science, 2006, 312(5781): 1777-1780.

    [9] [9] J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782.

    [10] [10] N Landy, S Sajuyigbe, J Mork, et al.. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100(20): 207402.

    [11] [11] D Schurig, J J Mock, B J Justice, et al.. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

    [12] [12] W S Cai, U K Chettiar, A V Kildishev, et al.. Optical cloaking with metamaterials [J]. Nature Photon, 2007, 1(4): 224-227.

    [13] [13] H Y Chen, C T Chan, P Sheng. Transformation optics and metamaterials [J]. Nature Mater, 2010, 9(5): 387-396.

    [14] [14] H F Ma, T J Cui. Three-dimensional broadband ground-plane cloak made of metamaterials [J]. Nature Commun, 2010, 1(3): 21.

    [15] [15] Y M Liu, T Zentgraf, G Bartal, et al.. Transformational plasmon optics [J]. Nano Lett, 2010, 10(6): 1991-1997.

    [16] [16] P A Huidobro, M L Nesterov, L Martin-Moreno, et al.. Transformation optics for plasmonics [J]. Nano Lett, 2010, 10(6): 1985-1990.

    [17] [17] A Aubry, D Y Lei, A I Fernández-Domínguez, et al.. Plasmonic light-harvesting devices over the whole visible spectrum [J]. Nano Lett, 2010, 10(7): 2574-2579.

    [18] [18] T Zentgraf, Y M Liu, M H Mikkelsen, et al.. Plasmonic luneburg and eaton lenses [J]. Nature Nanotechnol, 2011, 6(3): 151-155.

    [19] [19] A V Kildishev, A Boltasseva, V M Shalaev. Planar photonics with metasurfaces [J]. Science, 2013, 339(6125): doi: 10.1126/science.1232009.

    [20] [20] N Engheta. Antenna-guided light [J]. Science, 2011, 334(6054): 317-318.

    [21] [21] K L Tsakmakidis, A D Boardman, O Hess. “Trapped rainbow” storage of light in metamaterials [J]. Nature, 2007, 450(7168): 397-401.

    [22] [22] Q Q Gan, Z Fu, Y J Ding, et al.. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures [J]. Phys Rev Lett, 2008, 100(25): 256803.

    [23] [23] U Levy, M Abashin, K Ikeda, et al.. Inhomogenous dielectric metamaterials with space-variant polarizability [J]. Phys Rev Lett, 2007, 98(24): 243901.

    [24] [24] N Kundtz, D R Smith. Extreme-angle broadband metamaterial lens [J]. Nature Mater, 2010, 9(2): 129-132.

    [25] [25] D R Smith, J J Mock, A F Starr. Gradient index metamaterials [J]. Phys Rev E, 2005, 71(3): 036609.

    [26] [26] X Q Lin, T J Cui, J Y Chin, et al.. Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens [J]. Appl Phys Lett, 2008, 92(13): 131904.

    [27] [27] R Liu, Q Cheng, J Y Chin, et al.. Broadband gradient index microwave quasi optical elements based on non-resonant metamaterials [J]. Opt Express, 2009, 17(23): 21030-21041.

    [28] [28] B Vasi, G Isi, R Gaji, et al.. Controlling electromagnetic fields with graded photonic crystals in metamaterial regime [J]. Opt Express, 2010, 18(19): 20321-20333.

    [29] [29] N Yu, P Genevet, M A Kats, et al.. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

    [30] [30] X Ni, N K Emani, A Kildishev, et al.. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427.

    [31] [31] N Yu, F Aieta, P Genevet, et al.. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Lett, 2012, 12(12): 6328-6333.

    [32] [32] U Levy, H C Kim, C H Tsai, et al.. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation [J]. Opt Lett, 2005, 30(16): 2089-2091.

    [33] [33] S Larouche, Y-J Tsai, T Tyler, et al.. Infrared metamaterial phase holograms [J]. Nature Mater, 2012, 11(5): 450-454.

    [34] [34] X Yin, Z Ye, J Rho, et al.. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339(6126): 1405-1407.

    [35] [35] D M Pozar, S D Targonski, H D Syrigos. Design of millimeter wave microstrip reflectarrays [J]. IEEE Trans Antenn Propag, 1997, 45(2): 287-296.

    [36] [36] P Padilla, A Muoz-Acevedo, M Sierra-Castaer, et al.. Electronically reconfigurable transmitarray at Ku band for microwave applications [J]. IEEE Trans Antenn Propag, 2010, 58(8): 2571-2579.

    [37] [37] S Sun, Q He, S Xiao, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Mater, 2012, 11(5): 426-431.

    [38] [38] E Kretschmann, H Raether. Radiative decay of nonradiative surface plasmons excited by light [J]. Z Naturforsch A, 1968, 23(12): 2135-2136.

    [39] [39] H Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings [M]. New York: Springer-Verlag, 1988.

    [40] [40] M Neviere, R Petit, M Cadilhac. About the theory of optical crating coupler-waveguide systems [J]. Opt Commun, 1973, 8(2): 113-117.

    [41] [41] Y B Tang, Z C Wang, L Wosinski, et al.. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits [J]. Opt Lett, 2010, 35(8): 1290-1292.

    [42] [42] J B Pendry, L Martin-Moreno, F J Garcia-Vidal. Mimicking surface plasmons with structured surfaces [J]. Science, 2004, 305(5685): 847-848.

    [43] [43] M J Lockyear, A P Hibbins, J R Sambles. Microwave surface-plasmon-like modes on thin metamaterials [J]. Phys Rev Lett, 2009, 102(7): 073901.

    [44] [44] S Sun, K-Y Yang, C-M Wang, et al.. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Lett, 2012, 12(12): 6223-6229.

    [45] [45] X Li, S Xiao, B Cai, et al.. Flat metasurfaces to focus electromagnetic waves in reflection geometry [J]. Opt Lett, 2012, 37(23): 4940-4942.

    [46] [46] C Qu, S Xiao, S Sun, et al.. A theoretical study on the conversion efficiencies of gradient meta-surfaces [J]. Europhys Lett, 2013, 101(5): 54002.

    [47] [47] L Zhou, X Q Huang, C T Chan. A time-dependent Green′s function approach to study the transient phenomena in metamaterial lens focusing [J]. Photonics Nanostruct Fundam Appl, 2005, 3(2-3): 100-106.

    [48] [48] J M Hao, L Zhou, C T Chan. An effective-medium model for high-impedance surfaces [J]. Appl Phys A, 2007 87(2): 281-284.

    [49] [49] O Paul, B Reinhard, B Krolla, et al.. Gradient index metamaterial based on slot elements [J]. Appl Phys Lett, 2010, 96(24): 241110.

    [50] [50] J Neu, B Krolla, O Paul, et al.. Metamaterial-based gradient index lens with strong focusing in the THz frequency range [J]. Opt Express, 2010, 18(26): 27748-27757.

    [51] [51] L Verslegers, P B Catrysse, Z Yu, et al.. Planar lenses based on nanoscale slit arrays in a metallic film [J]. Nano Lett, 2009, 9(1): 235-238.

    [52] [52] L Lin, X M Goh, L P McGuinness, et al.. Broadband plasmonic microlenses based on patches of nanoholes [J]. Nano Lett, 2010, 10(10): 4111-4116.

    [53] [53] C Ma, Z Liu. A super resolution metalens with phase compensation mechanism [J]. Appl Phys Lett, 2010, 96(18): 183103.

    [54] [54] C Ma, M A Escobar, Z Liu. Extraordinary light focusing and Fourier transform properties of gradient-index metalenses [J]. Phys Rev B, 2011, 84(19): 195142.

    [55] [55] F Aieta, P Genevet, M A Kats, et al.. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Lett, 2012, 12(9): 4932-4936.

    Tools

    Get Citation

    Copy Citation Text

    Sun Shulin, He Qiong, Xiao Shiyi, Xu Qin, Li Xin, Qu Che, Zhou Lei. Research Progress on Gradient Meta-Surfaces[J]. Laser & Optoelectronics Progress, 2013, 50(8): 80009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 17, 2013

    Accepted: --

    Published Online: Aug. 8, 2013

    The Author Email: Shulin Sun (sls@fudan.edu.cn)

    DOI:10.3788/lop50.080009

    Topics