Journal of Innovative Optical Health Sciences, Volume. 4, Issue 2, 113(2011)
TRANSFECTION AND CELL FUSION BY FEMTOSECOND LASERS
[1] [1] D. E. Spence, P. N. Kean, W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti: sapphire laser," Opt. Lett. 16, 42-44 (1991).
[2] [2] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[3] [3] W. R. Zipfel, R.M.Williams, W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1372 (2003).
[4] [4] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[5] [5] K. K€onig, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[6] [6] I. Maxwell, S. Chung, E. Mazur, "Nanoprocessing of subcellular targets using femtosecond laser pulses," Med. Laser Appl. 20, 193-200 (2005).
[7] [7] K. K€onig, "Femtosecond laser microscopy in biomedicine," Laser Optoelectron. 2, 40-45 (2000).
[8] [8] K. K€onig, I. Riemann, P. Fischer, K. J. Halbhuber, "Intracellular nanosurgery with near infrared femtosecond laser pulses," Cell. Mol. Biol. 45, 195-201 (1999).
[9] [9] K. K€onig, O. Krauss, I. Riemann, "Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared," Opt. Exp. 10, 171-176 (2002).
[10] [10] W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Opt. Exp. 12, 4203-4213 (2004).
[11] [11] K. K€onig, I. Riemann, W. Fritzsche, "Nanodissection of human chromosomes with near infrared femtosecond laser pulses," Opt. Lett. 26, 819-821 (2001).
[12] [12] U. K. Tirlapur, K. K€onig, "Femtosecond near-infrared laser pulses as a versatile noninvasive tool for intratissue nanoprocessing in plants without compromising viability," Plant J. 31, 365-374 (2002).
[13] [13] U. Tirlapur, K. K€onig, "Near-infrared femtosecond laser pulses as a novel non-invasive means for dye permeation and 3D imaging of localised dye-coupling in the Arabidopsis root meristem," Plant J. 20, 363-370 (1999).
[14] [14] A. Zumbusch, G. R. Holtom, X. S. Xie, "Vibrational mircoscopy using coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4014 (1999).
[15] [15] A. Volkmer, J.-X. Cheng, X. S. Xie, "Vibrational imaging with high sensitivity via epidetected coherent anti Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 23901 (2001).
[16] [16] C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cffte, C. P. Lin, X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Aca. Sci. 102, 16807-16811 (2005).
[17] [17] C. L. Evans, X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Chemically selective imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008).
[18] [18] A. Uchugonova, A. Isemann, E. Gorjup, G. Tempea, R. Bückle, W. Watanabe, K. K€onig, "Optical knock out of stem cells extremely ultrashort femtosecond laser pulses," J. Biophotonics 1, 463-469 (2008).
[19] [19] M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, A. Ben-Yakar, "Neurosurgery Functional regeneration after laser axotomy," Nature 432, 822-822 (2004).
[20] [20] N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models of stroke," Nat. Methods 3, 99-108 (2006).
[21] [21] K. K€onig, I. Riemann, F. Stracke, R. Le Harzic, "Nanoprocessing with nanojoule near infrared femtosecond laser pulses," Med. Laser Appl. 20, 169-184 (2005).
[22] [22] F. Garwe, A. Czaki, G. Maubach, A. Steinbrück, A.Weise, K.K€onig, W. Fritzsche, "Laser pulse energy conversion on sequence-specifically bound metal nanoparticles and its application for DNA manipulation," Med. Laser Appl. 20, 201-206 (2005).
[23] [23] A. Czaki, F. Garwe, A. Steinbrück, G. Maubach, G. Festag, A. Weise, I. Riemann, K. K€onig, W. Fritzsche, "A parallel approach for sub-wavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas," Nanoletters 2, 247-253 (2007).
[24] [24] C. L. Hoy, W. N. Everett, J. Kobler, A. Ben-Yakar, "Towards endoscopic ultrafast laser microsurgery of vocal folds," Proc. SPIE 7548, 754831-754840 (2010).
[25] [25] B. G. Wang, I. Riemann, H. Schubert, D. Schweitzer, K. K€onig, K. J. Halbhuber, "Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects," Lasers Surg. Med. 39, 527-533 (2007).
[26] [26] S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Low, Z. Gatzioufas, K. K€onig, "In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion," Curr. Eye Res. 33, 277-283 (2008).
[27] [27] A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, R. Birngruber, "Energy balance of optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys. B 68, 271-280 (1999).
[28] [28] J. Noack, A. Vogel, "Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coeffi- cients, and energy density," IEEE J. Quantum Electron. 35, 1156 (1999).
[29] [29] A. Vogel, J. Noack, G. Hüttman, G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B: Lasers and Optics 81, 1015-1047 (2005).
[30] [30] D. J. Wells, "Gene therapy progress and prospects: Electroporation and other physical methods," Gene Therapy 11, 1363-1369 (2004).
[31] [31] S. Mehier-Humbert, R. H. Guy, Physical methods for gene transfer: Improving the kinetics of gene delivery into cells," Adv. Drug Deliv. Rev. 57, 733-753 (2005).
[32] [32] D. J. Stephens, R. Pepperkok, "The many ways to cross the plasma membrane," Proc. Natl. Acd. Sci. USA 98, 4295-4298 (2001).
[33] [33] U. K. Tirlapur, K. K€onig, "Targeted transfection by femtosecond laser," Nature 418, 290-291 (2002).
[34] [34] D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn- Moore, K. Dholakia, "Femtosecond optical transfection of cells: Viability and efficiency," Opt. Exp. 14, 7125-7133 (2006).
[35] [35] U. K. Tirlapur, K. K€onig, C. Peuckert, R. Krieg, K.-J. Halbhuber, "Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Exp. Cell Res. 263, 88-97 (2001).
[36] [36] H. He, S. K. Kong, R. K. Y. Lee, Y. K. Suen, K. T. Chan, "Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm," Opt. Lett. 33, 2961-2963 (2008).
[37] [37] X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn- Moore, K. Dholakia, "Femtosecond cellular transfection using a nondiffracting light beam," Appl. Phys. Lett. 91, 053902-053904 (2007).
[38] [38] A. Uchugonova, K. K€onig, R. Bueckle, A. Isemann, G. Tempea, "Targeted transfection of stem cells with sub-20 femtosecond laser pulses," Opt. Exp. 16, 9357-9364 (2008).
[39] [39] N. I. Smith, K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Appl. Phys. Lett. 79, 1208-1210 (2001).
[40] [40] S. Iwanaga, T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, S. Kawata, "Locationdependent photogeneration of calcium waves in HeLa cells," Cell Biochem. Biophys. 45, 167-176 (2006).
[41] [41] K. K€onig, H. Liang, M. W. Berns, B. Tromberg, "Cell damage by near-IR microbeams," Nature 377, 20-21 (1995).
[42] [42] K. K€onig, P. So, W. W. Mantulin, E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes," Opt. Lett. 22, 135-136 (1997).
[43] [43] K. K€onig, T. W. Becker, I. Riemann, P. Fischer, K. J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999).
[44] [44] H. Oehring, I. Riemann, P. Fischer, K.-J. Halbhuber, K. K€onig, "Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses," Scanning 22, 263-270 (2000).
[45] [45] H. He, K. T. Chan, S. K. Kong, R. K. Y. Lee, "Mechanism of oxidative stress generation in cells by localized near-infrared femtosecond laser excitation," Appl. Phys. Lett. 95, 233702-233704 (2009).
[46] [46] H. He, S. K. Kong, K. T. Chan, "Identification of source of Ca2t in HeLa cells by femtosecond laser excitation," J. Biomed. Opt. 15, 057010-1-5 (2010).
[47] [47] X. Tsampoula, K. Taguchi, T. Cizmar, V. Garces- Chavez, N. Ma, S. Mohanty, K. Mohanty, F. Gunn- Moore, K. Dholakia, "Fibre based cellular transfection," Opt. Exp. 16, 17007-17013 (2008).
[48] [48] J. Baumgart, W. Bintig, A. Ngezahayo, S. Willenbrock, H. Murua Escobar, W. Ertmer, H. Lubatschowski, A. Heisterkamp, "Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53a cells," Opt. Exp. 16, 3021-3031 (2008).
[49] [49] F. Stracke, I. Riemann, K. K€onig, "Optical nanoinjection of macromolecules into vital cells," J. Photochem. Photobiol. 81, 136-142 (2005).
[50] [50] L. E. Barrett, J.-Y. Sul, H. Takano, E. J. Van Bockstaele, P. G. Haydon, J. H. Eberwine, "Regiondirected phototransfection reveals the functional significance of a dendritically synthesized transcription factor," Nature Methods 3, 455-460 (2006).
[51] [51] Z. F€oldes-Papp, K. K€onig, H. Studier, R. Bückle, H. G. Breunig, A. Uchugonova, G. M. Kostner, "Trafficking of mature miRNA-122 into the nucleus of live liver cells," Curr. Pharm. Biotechnol. 10, 569-578 (2009).
[52] [52] J.-Y. Sul, C.-W. K. Wu, F. Zenga, J. Jochems, M. T. Lee, T. K. Kim, T. Peritz, P. Buckley, D. J. Cappelleri, M. Maronski, M. Kim, V. Kumar, D. Meaney, J. Kim, J. Eberwine, "Transcriptome transfer produces a predictable cellular phenotype," Proc. Natl. Acad. Sci. USA 106, 7624-7629 (2009).
[53] [53] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, H. Welling, "Ablation of metals by ultrashort laser pulses," J. Opt. Soc. Am. B 14, 2716-2722 (1997).
[54] [54] D. N. Nikogosyan, A. A. Oraevsky, V. Rupasov, "Two-photon ionization and dissociation of liquid water by powerful laser UV radiation," Chem. Phys. 77, 131-138 (1983).
[55] [55] U. Trefzer, G. Herberth, K. Wohlan, A. Milling, M. Thiemann, T. Sherev, K. Sparbier, W. Sterry, P. Walden, "Vaccination with hybrids of tumor and dendritic cells induces tumor-specific T-cell and clinical responses in melanoma stage III and IV patients," Int. J. Cancer 110, 730-740 (2004).
[56] [56] R. W. Steubing, S. Cheng, W. H. Wright, Y. Numajiri, M. W. Berns, "Laser induced cell fusion in combination with optical tweezers: The laser cell fusion trap," Cytometry 12, 505-510 (1991).
[57] [57] J. Gong, X. Zhao, Q. Xing, F. Li, H. Li, Y. Li, L. Chai, Q. Wang, "Femtosecond laser-induced cell fusion," Appl. Phys. Lett. 92, 093901-093903 (2008).
[58] [58] R. Davidson, P. Gerald, "Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol," Somatic Cell Mol. Genetics 2, 165-176 (1976).
[59] [59] T. H. Norwood, C. J. Zeigler, G. M. Martin, "Dimethyl sulfoxide enhances polyethylene glycolmediated somatic cell fusion," Somatic Cell Mol. Genetics 2, 263-270 (1976).
[60] [60] H. He, K. T. Chan, S. K. Kong, R. K. Y. Lee, "Alloptical human cell fusion by a fiber femtosecond laser," Appl. Phys. Lett. 93, 163901-163903 (2008).
[61] [61] A. E. Wurmser, F. H. Gage, "Cell fusion causes confusions," Nature 416, 485 (2002).
[62] [62] J. W. Wojcieszyn, R. A. Schlegel, K. Lumley- Sapanski, K. A. Jacobson, "Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes," J. Cell Biol. 96, 151 (1983).
[63] [63] Q. Xing, F. Mao, L. Chai, Q. Wang, "Numerical modeling and theoretical analysis of femtosecond laser tweezers," Opt. Laser Technol. 36, 635 (2004).
[64] [64] F. Docchio, C. A. Sachhi, J. Marshall, "Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations," Lasers Ophthalmol. 1, 83-93 (1986).
[65] [65] A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, "Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses," Phys. Rev. B 61, 11-437 (2000).
[66] [66] B. Rethfeld, "Unified model for the free-electron avalanche in laser-irradiated dielectrics," Phys. Rev. Lett. 92, 187-401 (2004).
Get Citation
Copy Citation Text
HAO HE, SIU KAI KONG, KAM TAI CHAN. TRANSFECTION AND CELL FUSION BY FEMTOSECOND LASERS[J]. Journal of Innovative Optical Health Sciences, 2011, 4(2): 113
Received: --
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: CHAN KAM TAI (ktchan@ee.cuhk.edu.hk)