Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2712(2023)
Research Progress on Key Components and Seawater Electrolysis of Solid Oxide Electrolytic Cell
[1] [1] MOMIRLAN M, VEZIROGLU T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. Int J Hydrog Energy, 2005, 30(7): 795-802.
[2] [2] TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
[3] [3] MURADOV N, VEZIROLU T. From hydrocarbon to hydrogen? carbon to hydrogen economy[J]. Int J Hydrog Energy, 2005, 30(3): 225-237.
[4] [4] KHAN M A, ZHAO H B, ZOU W W, et al. Recent progresses in electrocatalysts for water electrolysis[J]. Electrochem Energy Rev, 2018, 1(4): 483-530.
[5] [5] SAPOUNTZI F M, GRACIA J M, KEES-JAN WESTSTRATE C J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Prog Energy Combust Sci, 2017, 58: 1-35.
[6] [6] DI GIORGIO P, DESIDERI U. Potential of reversible solid oxide cells as electricity storage system[J]. Energies, 2016, 9(8): 662.
[7] [7] LEE B, LIM D, LEE H, et al. Which water electrolysis technology is appropriate?: Critical insights of potential water electrolysis for green ammonia production[J]. Renew Sustain Energy Rev, 2021, 143: 110963.
[8] [8] WANG F, WANG L, OU Y L, et al. Thermodynamic analysis of solid oxide electrolyzer integration with engine waste heat recovery for hydrogen production[J]. Case Stud Therm Eng, 2021, 27: 101240.
[9] [9] XU Z L, REN N, TANG M, et al. Numerical investigations for a solid oxide electrolyte cell stack[J]. Int J Hydrog Energy, 2019, 44(38): 20997-21009.
[10] [10] ZHAO Y M, XUE H Q, JIN X, et al. System level heat integration and efficiency analysis of hydrogen production process based on solid oxide electrolysis cells[J]. Int J Hydrog Energy, 2021, 46(77): 38163-38174.
[11] [11] DILLIG M, LEIMERT J, KARL J. Planar high temperature heat pipes for SOFC/SOEC stack applications[J]. Fuel Cells, 2014, 14(3): 479-488.
[12] [12] PAN W P, CHEN K F, AI N, et al. Mechanism and kinetics of Ni-Y2O3-ZrO2Hydrogen electrode for water electrolysis reactions in solid oxide electrolysis cells[J]. J Electrochem Soc, 2015, 163(2): F106-F114.
[13] [13] NECHACHE A, CASSIR M, RINGUED A. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review[J]. J Power Sources, 2014, 258: 164-181.
[14] [14] GRO-BARSNICK S M, FANG Q, BATFALSKY P, et al. Post-test characterization of metallic materials and adjacent components in an SOFC stack after 34, 000 h operation at 700 ℃[J]. Fuel Cells, 2019, 19(1): 84-95.
[15] [15] MENZLER N H, SEBOLD D, GUILLON O. Post-test characterization of a solid oxide fuel cell stack operated for more than 30, 000 hours: The cell[J]. J Power Sources, 2018, 374: 69-76.
[16] [16] LIM C K, LIU Q L, ZHOU J, et al. High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells[J]. J Power Sources, 2017, 342: 79-87.
[17] [17] TONG X F, HENDRIKSEN P V, HAUCH A, et al. An up-scalable, infiltration-based approach for improving the durability of Ni/YSZ electrodes for solid oxide cells[J]. J Electrochem Soc, 2020, 167(2): 024519.
[18] [18] AMAYA-DUEAS D M, RIEGRAF M, NENNING A, et al. Operational aspects of a perovskite chromite-based fuel electrode in solid oxide electrolysis cells (SOEC)[J]. ACS Appl Energy Mater, 2022, 5(7): 8143-8156.
[19] [19] LI Q S, KUANG K B, SUN Y N, et al. Deficiency of hydrogen production in commercialized planar Ni-YSZ/YSZ/LSM-YSZ steam electrolysis cells[J]. Int J Hydrog Energy, 2022, 47(56): 23514-23519.
[20] [20] EBBESEN S D, JENSEN S H, HAUCH A, et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chem Rev, 2014, 114(21): 10697-10734.
[21] [21] KASAI S. Hydrogen electrical energy storage by high-temperature steam electrolysis for next-millennium energy security[J]. Int J Hydrog Energy, 2014, 39(36): 21358-21370.
[22] [22] ALNEGREN P, SATTARI M, SVENSSON J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800 ℃[J]. J Power Sources, 2018, 392: 129-138.
[23] [23] LAY-GRINDLER E, LAURENCIN J, VILLANOVA J, et al. Degradation study by 3D reconstruction of a nickel-yttria stabilized zirconia cathode after high temperature steam electrolysis operation[J]. J Power Sources, 2014, 269: 927-936.
[24] [24] GU X K, NIKOLLA E. Fundamental insights into high-temperature water electrolysis using Ni-based electrocatalysts[J]. J Phys Chem C, 2015, 119(48): 26980-26988.
[25] [25] PARK B K, COX D, BARNETT S A. Effect of nanoscale Ce0.8Gd0.2O2-δ infiltrant and steam content on Ni-(Y2O3)0.08(ZrO2)0.92 fuel electrode degradation during high-temperature electrolysis[J]. Nano Lett, 2021, 21(19): 8363-8369.
[26] [26] UCHIDA H, NISHINO H, PUENGJINDA P, et al. Remarkably improved durability of Ni-Co dispersed samaria-doped ceria hydrogen electrodes by reversible cycling operation of solid oxide cells[J]. J Electrochem Soc, 2020, 167(13): 134516.
[27] [27] VIBHU V, VINKE I C, ZARAVELIS F, et al. Performance and degradation of electrolyte-supported single cell composed of Mo-Au-Ni/GDC fuel electrode and LSCF oxygen electrode during high temperature steam electrolysis[J]. Energies, 2022, 15(8): 2726.
[28] [28] PUENGJINDA P, NISHINO H, KAKINUMA K, et al. Effect of microstructure on performance of double-layer hydrogen electrodes for reversible SOEC/SOFC[J]. J Electrochem Soc, 2017, 164(9): F889-F894.
[29] [29] HOSOI K, HAGIWARA H, IDA S, et al. La0.8Sr0.2FeO3-δ as fuel electrode for solid oxide reversible cells using LaGaO3-based oxide electrolyte[J]. J Phys Chem C, 2016, 120(29): 16110-16117.
[30] [30] QI W T, ZHANG Y, CUI J W, et al. In-situ constructing NiO nanoplatelets network on La0.75Sr0.25Mn0.5Cr0.5O3-δ electrode with enhanced steam electrolysis[J]. Int J Hydrog Energy, 2017, 42(9): 5657-5666.
[31] [31] KAMLUNGSUA K, SU P C. Moisture-dependent electrochemical characterization of Ba0.2Sr1.8Fe1.5Mo0.5O6-δ as the fuel electrode for solid oxide electrolysis cells (SOECs)[J]. Electrochim Acta, 2020, 355: 136670.
[32] [32] KAMECKI B, MIRUSZEWSKI T, KARCZEWSKI J. Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials[J]. J Electroceram, 2019, 42(1/2): 31-40.
[33] [33] ZHANG L J, ZHU X B, CAO Z Q, et al. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell[J]. Electrochim Acta, 2017, 232: 542-549.
[34] [34] ZHANG L J, WANG Z H, CAO Z Q, et al. High activity oxide Pr0.3Sr0.7Ti0.3Fe0.7O3-δ as cathode of SOEC for direct high-temperature steam electrolysis[J]. Int J Hydrog Energy, 2017, 42(17): 12104-12110.
[35] [35] JUN A, KIM J, SHIN J, et al. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen-capacity perovskite[J]. Angew Chem, 2016, 128(40): 12700-12703.
[36] [36] RAJENDRAN S, THANGAVEL N K, DING H P, et al. Tri-doped BaCeO3-BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs)[J]. ACS Appl Mater Interfaces, 2020, 12(34): 38275-38284.
[37] [37] CHUEH W C, HAO Y, JUNG W, et al. High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes[J]. Nat Mater, 2012, 11(2): 155-161.
[38] [38] MEWAFY B, PALOUKIS F, PAPAZISI K M, et al. Influence of surface state on the electrochemical performance of nickel-based cermet electrodes during steam electrolysis[J]. ACS Appl Energy Mater, 2019, 2(10): 7045-7055.
[39] [39] PAPAEFTHIMIOU V, NIAKOLAS D K, PALOUKIS F, et al. Operando observation of nickel/ceria electrode surfaces during intermediate temperature steam electrolysis[J]. J Catal, 2017, 352: 305-313.
[40] [40] NEIDHARDT J P, KEE R J, BESSLER W G. Electrode reoxidation in solid-oxide cells: Detailed modeling of nickel oxide film growth[J]. ECS Trans, 2013, 57(1): 2573-2582.
[41] [41] LI Y X, GAN Y, WANG Y, et al. Composite cathode based on Ni-loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer[J]. Int J Hydrog Energy, 2013, 38(25): 10196-10207.
[42] [42] LIU Q A, YANG C H, DONG X H, et al. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells[J]. Int J Hydrog Energy, 2010, 35(19): 10039-10044.
[43] [43] TSEKOURAS G, NEAGU D, IRVINE J T S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants[J]. Energy Environ Sci, 2013, 6(1): 256-266.
[44] [44] DUNFIELD S P, MOORE D T, KLEIN T R, et al. Curtailing perovskite processing limitations via lamination at the perovskite/perovskite interface[J]. ACS Energy Lett, 2018, 3(5): 1192-1197.
[45] [45] CLARK C P, MANN J E, BANGSUND J S, et al. Formation of stable metal halide perovskite/perovskite heterojunctions[J]. ACS Energy Lett, 2020, 5(11): 3443-3451.
[46] [46] KUNG P K, LI M H, LIN P Y, et al. Lead-free double perovskites for perovskite solar cells[J]. Sol RRL, 2020, 4(2): 1900306.
[47] [47] YANG X D, IRVINE J T S. (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam[J]. J Mater Chem, 2008, 18(20): 2349-2354.
[48] [48] SINGHAL S C, KENDALL K. Preface[M]//High Temperature and Solid Oxide Fuel Cells. Amsterdam: Elsevier, 2003.
[49] [49] HU B X, APHALE A N, REISERT M, et al. Solid oxide electrolysis for hydrogen production: From oxygen ion to proton conducting cells[J]. ECS Trans, 2018, 85(10): 13-20.
[50] [50] MORALES-ZAPATA M A, LARREA A, LAGUNA-BERCERO M A. Reversible operation performance of microtubular solid oxide cells with a nickelate-based oxygen electrode[J]. Int J Hydrog Energy, 2020, 45(8): 5535-5542.
[51] [51] ISHIHARA T. Solid oxide reversible cells (SORCs) using LaGaO3- based oxide electrolyte and oxide fuel electrode[C]//AIP Conference Proceedings. Astana, Kazakhstan. Author(s), 2017.
[52] [52] BERNADET L, MONCASI C, TORRELL M, et al. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes[J]. Int J Hydrog Energy, 2020, 45(28): 14208-14217.
[53] [53] KIM S, KIM G, MANTHIRAM A. Dysprosium doping effects on perovskite oxides for air and fuel electrodes of solid oxide cells[J]. J Power Sources, 2021, 497: 229873.
[54] [54] PU T T, TAN W Y, SHI H G, et al. Steam/CO2 electrolysis in symmetric solid oxide electrolysis cell with Barium cerate-carbonate composite electrolyte[J]. Electrochim Acta, 2016, 190: 193-198.
[55] [55] BI L, TRAVERSA E. Steam electrolysis by proton-conducting solid oxide electrolysis cells (SOECs) with chemically stable BaZrO3-based electrolytes[J]. ECS Trans, 2015, 68(1): 3387-3393.
[56] [56] DANILOV N, LYAGAEVA J, VDOVIN G, et al. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode[J]. Energy Convers Manag, 2018, 172: 129-137.
[57] [57] ARACHI Y, SAKAI H, YAMAMOTO O, et al. Electrical conductivity of the ZrO2-Ln2O3 (ln=lanthanides) system[J]. Solid State Ion, 1999, 121(1-4): 133-139.
[58] [58] HAUCH A, EBBESEN S D, JENSEN S H, et al. Highly efficient high temperature electrolysis[J]. J Mater Chem, 2008, 18(20): 2331-2340.
[59] [59] BABA M A, LABBADI M, CHERKAOUI M, et al. Fuel cell electric vehicles: A review of current power electronic converters Topologies and technical challenges[J]. IOP Conf Ser: Earth Environ Sci, 2021, 785(1): 012011.
[60] [60] ISHIHARA T, MATSUDA H, TAKITA Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor[J]. J Am Chem Soc, 1994, 116(9): 3801-3803.
[61] [61] ISHIHARA T, HONDA M, SHIBAYAMA T, et al. Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor: I. doped as a new cathode material[J]. J Electrochem Soc, 1998, 145(9): 3177-3183.
[62] [62] HUANG P N, PETRIC A. Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium[J]. J Electrochem Soc, 1996, 143(5): 1644-1648.
[63] [63] YAMAMOTO O. Solid oxide fuel cells: Fundamental aspects and prospects[J]. Electrochim Acta, 2000, 45(15/16): 2423-2435.
[64] [64] ZHOU J, XU L Y, DING C W, et al. Layered perovskite (PrBa)0.95(Fe0.9Mo0.1)2O5+δ as electrode materials for high-performing symmetrical solid oxide electrolysis cells[J]. Mater Lett, 2019, 257: 126758.
[65] [65] CHEN K F, JIANG S P. Review-materials degradation of solid oxide electrolysis cells[J]. J Electrochem Soc, 2016, 163(11): F3070-F3083.
[66] [66] KHAN M S, XU X, KNIBBE R, et al. Air electrodes and related degradation mechanisms in solid oxide electrolysis and reversible solid oxide cells[J]. Renew Sustain Energy Rev, 2021, 143: 110918.
[67] [67] MEN H J, TIAN N, QU Y M, et al. Improved performance of a lanthanum strontium manganite-based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement[J]. Ceram Int, 2019, 45(6): 7945-7949.
[68] [68] LIU Y, TIAN Y F, WANG W J, et al. Promoting electrocatalytic activity and stability via Er0.4Bi1.6O3-δ in situ decorated La0.8Sr0.2MnO3-δ oxygen electrode in reversible solid oxide cell[J]. ACS Appl Mater Interfaces, 2020, 12(52): 57941-57949.
[69] [69] FAN H, ZHANG Y L, HAN M F. Infiltration of La0·6Sr0·4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell[J]. J Alloys Compd, 2017, 723: 620-626.
[70] [70] AI N, HE S, LI N, et al. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells[J]. J Power Sources, 2018, 384: 125-135.
[71] [71] YANG R, TIAN Y F, LIU Y, et al. Pd-La0.6Sr0.4Co0.2Fe0.8O3-δ composite as active and stable oxygen electrode for reversible solid oxide cells[J]. J Rare Earths, 2023, 41(4): 599-604.
[72] [72] KIM S, JOH D W, LEE D Y, et al. Microstructure tailoring of solid oxide electrolysis cell air electrode to boost performance and long-term durability[J]. Chem Eng J, 2021, 410: 128318.
[73] [73] ZHAO Z, QI H Y, TANG S, et al. A highly active and stable hybrid oxygen electrode for reversible solid oxide cells[J]. Int J Hydrog Energy, 2021, 46(73): 36012-36022.
[74] [74] YANG T, SHAULA A, PUKAZHSELVAN D, et al. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ[J]. Appl Surf Sci, 2017, 424: 82-86.
[75] [75] YANG X X, MIAO H, PAN B W, et al. In-situ synthesis of Sm0.5Sr0.5Co0.5O3-δ@Sm0.2Ce0.8O1.9 composite oxygen electrode for electrolyte-supported reversible solid oxide cells (RSOC)[J]. Energies, 2022, 15(6): 2178.
[76] [76] LING Y H, WU Y J, TIAN Y F, et al. Stable solid oxide electrolysis cells with SSF-based symmetrical electrode for direct high-temperature steam electrolysis[J]. Ceram Int, 2022, 48(1): 981-991.
[77] [77] LI Y Y, YANG L L, LI W L, et al. A promising strontium and cobalt-free air electrode Pr1-xCaxFeO3-δ for solid oxide electrolysis cell[J]. Int J Hydrog Energy, 2021, 46(59): 30230-30238.
[78] [78] LI Z F, SHAN P K, TANG W, et al. Enhancing the catalytic activity and stability of the Pr2NiO4+δ Ruddlesden-Popper perovskite air electrode for high-temperature steam electrolysis with Barium doping[J]. J Alloys Compd, 2023, 932: 167646.
[79] [79] VIBHU V, FLURA A, ROUGIER A, et al. Electrochemical ageing study of mixed lanthanum/praseodymium nickelates La2-xPrxNiO4+δ as oxygen electrodes for solid oxide fuel or electrolysis cells[J]. J Energy Chem, 2020, 46: 62-70.
[80] [80] TONG X, ZHOU F, YANG S B, et al. Performance and stability of ruddlesden-popper La2NiO4+δ oxygen electrodes under solid oxide electrolysis cell operation conditions[J]. Ceram Int, 2017, 43(14): 10927-10933.
[81] [81] TAN K, YAN X M, ZHU Z Y, et al. Solid oxide cells with cermet of silver and gadolinium-doped-ceria symmetrical electrodes for high-performance power generation and water electrolysis[J]. Int J Hydrog Energy, 2022, 47(60): 25090-25103.
[82] [82] MAHATA A, DATTA P, BASU R N. Synthesis and characterization of Ca doped LaMnO3 as potential anode material for solid oxide electrolysis cells[J]. Ceram Int, 2017, 43(1): 433-438.
[83] [83] LI N, KEANE M, MAHAPATRA M K, et al. Mitigation of the delamination of LSM anode in solid oxide electrolysis cells using manganese-modified YSZ[J]. Int J Hydrog Energy, 2013, 38(15): 6298-6303.
[84] [84] SOHAL M S, O’BRIEN J E, STOOTS C M, et al. Degradation issues in solid oxide cells during high temperature electrolysis[J]. J Fuel Cell Sci Technol, 2012, 9(1): 1.
[85] [85] BAUSA N, SOLS C, STRANDBAKKE R, et al. Development of composite steam electrodes for electrolyzers based on Barium zirconate[J]. Solid State Ion, 2017, 306: 62-68.
[86] [86] RIEDEL M, HEDDRICH M P, FRIEDRICH K A. Analysis of pressurized operation of 10 layer solid oxide electrolysis stacks[J]. Int J Hydrog Energy, 2019, 44(10): 4570-4581.
[87] [87] BERGER C, BUCHER E, GSPAN C, et al. Impact of SO2 on the oxygen exchange kinetics of the promising SOFC/SOEC air electrode material La0.8Ca0.2FeO3-δ[J]. J Electrochem Soc, 2017, 164(10): F3008-F3018.
[88] [88] KHARTON V V, YAREMCHENKO A A, SHAULA A L, et al. Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure[J]. J Solid State Chem, 2004, 177(1): 26-37.
[89] [89] RAMASAMY D, NASANI N, PUKAZHSELVAN D, et al. Increased performance by use of a mixed conducting buffer layer, terbia-doped ceria, for Nd2NiO4+δ SOFC/SOEC oxygen electrodes[J]. Int J Hydrog Energy, 2019, 44(59): 31466-31474.
[90] [90] TONG X F, OVTAR S, BRODERSEN K, et al. A 4 × 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production[J]. ACS Appl Mater Interfaces, 2019, 11(29): 25996-26004.
Get Citation
Copy Citation Text
LI Desheng, GUO Hu, HU Yingzhen, HE Xihong, QIU Guoxing, LIU Senhui, LI Chengxin. Research Progress on Key Components and Seawater Electrolysis of Solid Oxide Electrolytic Cell[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2712
Category:
Received: Mar. 3, 2023
Accepted: --
Published Online: Nov. 26, 2023
The Author Email: Desheng LI (xbcgx082213@xauat.edu.cn)
CSTR:32186.14.