Journal of Advanced Dielectrics, Volume. 11, Issue 4, 2150020(2021)

Investigation of the effect of in-situ grown PPy on low frequency dielectric properties and other properties of PVA–PVP blend film

[in Chinese]1、*, [in Chinese]1,2, [in Chinese]3, [in Chinese]3, and [in Chinese]1
Author Affiliations
  • 1Department of Physics, School of Science Gujarat University, Ahmedabad, Gujarat, India
  • 2Applied Sciences and Humanities Department SAL College of Engineering, Ahmedabad, Gujarat, India
  • 3Institute for Plasma Research, Gandhinagar Gujarat, India
  • show less
    References(37)

    [1] [1] R. J. Sengwa and P. Dhatarwal, Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/ SnO2 nanocomposites for advanced flexible device technologies, J. Mater. Sci.: Mater. Electron. 13, 1 (2021).

    [2] [2] P. Gahlout and V. Choudhary, EMI shielding response of poly-pyrrole-MWCNT/polyurethane composites, Synth. Metals 266, 116414 (2020).

    [3] [3] M. T. Ramesan, K. P. Greeshma, K. Parvathi and T. Anilkumar, Structural, electrical, thermal, and gas sensing properties of new con-ductive blend nanocomposites based on polypyrrole/phenothiazine/ silver-doped zinc oxide, J. Vinyl Addit. Technol. 26, 187 (2020).

    [4] [4] V. S. Shanthala, S. N. Shobha Devi and M. V. Murugendrappa, Synthesis, characterization and DC conductivity studies of poly-pyrrole/copper zinc iron oxide nanocomposites, J. Asian Ceram. Soc. 5, 227 (2017).

    [5] [5] M. T. Ramesan, P. Jayakrishnan, T. Anilkumar and G. Mathew, Influence of copper sulphide nanoparticles on the structural, mechanical and dielectric properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) blend nanocomposites, J. Mater. Sci.: Mater. Electron. 29, 1992 (2018).

    [6] [6] M. T. Ramesan, V. K. Athira, P. Jayakrishnan and C. Gopinathan, Preparation, characterization, electrical and antibacterial proper-ties of sericin/poly (vinyl alcohol)/poly (vinyl pyrrolidone) com-posites, J. Appl. Polym. Sci. 133, 11 (2016).

    [7] [7] A. Y. Yassin, Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium bat-teries, J. Mater. Sci.: Mater. Electron. 31, 19447 (2020).

    [8] [8] K. Rajesh, V. Crasta, N. B. Rithin Kumar, G. Shetty and P. D. Rekha, Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposites, J. Polym. Res. 26, 1(2019).

    [9] [9] Gh. Mohammed, A. M. El Sayed and W. M. Morsi, Spectroscopic, thermal, and electrical properties of MgO/polyvinyl pyrrolidone/ polyvinyl alcohol nanocomposites, J. Phys. Chem. Solids. 115, 238 (2018).

    [10] [10] K. Deshmukh, M. B. Ahamed, A. R. Polu, K. K. Sadasivuni, S. K. K. Pasha, D. Ponnamma, M. Al-Ali AlMaadeed, R. R. Deshmukh and K. Chidambaram, Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state bat-tery applications, J. Mater. Sci.: Mater. Electron. 27, 11410 (2016).

    [11] [11] N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura and S. Asath Bahadur, A study on polymer blend electrolyte based on PVA/PVP with proton salt, Polym. Bull. 71, 1061 (2014).

    [12] [12] B. Shanthi and S. Muruganand, Structural, vibrational, thermal, and electrical properties of PVA/PVP biodegradable polymer, Inter J Sci Eng Appl Sci. 1, 1105 (2015).

    [13] [13] A. S. El-Houssiny, A. A. M. Ward, S. H. Mansour and S. L. Abd-El-Messieh, Biodegradable blends based on polyvinyl pyrrolidone for insulation purposes, J. Appl. Polym. Sci. 124, 3879 (2012).

    [14] [14] S. Choudhary and R. J. Sengwa, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodi-electrics for multifunctional microelectronic devices, Curr. Appl. Phys. 18, 1041 (2018).

    [15] [15] S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nano-composites for their flexible nanodielectric applications, J. Mater. Sci.: Mater. Electron. 29, 10517 (2018).

    [16] [16] F. M. Ali and R. M. Kershi, Synthesis and characterization of La 3+ ions incorporated (PVA/PVP) polymer composite films for opto-electronics devices, J. Mater. Sci.: Mater. Electron. 31, 2557 (2020).

    [17] [17] G. Kandhol, H. Wadhwa, S. Chand, S. Mahendia and S. Kumar, Study of dielectric relaxation behavior of composites of Poly (vinyl alchohol) (PVA) and Reduced graphene oxide (RGO), Vacuum 160, 384 (2019).

    [18] [18] B. Chaudhuri, B. Mondal, S. K. Ray and S. C. Sarkar, A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyr-rolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application, Colloids Surf. B. 143, 71 (2016).

    [19] [19] M. Das and D. Sarkar, Development of room temperature etha-nol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix, Polym. Bull. 75, 3109 (2018).

    [20] [20] M. K. Mohanapriya, K. Deshmukh, M. B. Ahamed, K. Chid-ambaram and S. K. K. Pasha, Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites, Mater. Today: Proc. 3, 1864 (2016)

    [21] [21] L. Jiang, H.-K. Jun, Y.-S. Hoh, J.-O. Lim, D.-D. Lee and J.-S. Huh, Sensing characteristics of polypyrrole–poly (vinyl alcohol) meth-anol sensors prepared by in situ vapor state polymerization, Sens. Actuators B 105, 132 (2005).

    [22] [22] M. T. Ramesan, In situ synthesis, characterization and conductiv-ity of copper sulphide/polypyrrole/polyvinyl alcohol blend nano-composites, Polym.-Plast. Technol. Eng. 51, 1223 (2012).

    [23] [23] S. Kumar, G. K. Prajapati, A. L. Saroj and P. N. Gupta, Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2, Physica B 554, 158 (2019).

    [24] [24] H. Albaris and G. Karuppasamy, CuO–ZnO p–n junction enhanced oxygen sensing property of polypyrrole nanocomposite at room temperature, J. Mater. Sci.: Mater. Electron. 30, 9989 (2019).

    [25] [25] K. Malook, M. Khan and M. Ali, Polypyrrole-CuO based compos-ites, promotional effects of CuO contents on polypyrrole charac-teristics, J. Mater. Sci.: Mater. Electron. 30, 3882 (2019).

    [26] [26] H. M. Zidan, E. M. Abdelrazek, A. M. Abdelghany and A. E. Tara-biah, Characterization and some physical studies of PVA/PVP filled with MWCNTs, J. Mater. Res. Technol. 8, 904 (2019).

    [27] [27] S. Choudhary, Structural, morphological, thermal, dielectric, and electrical properties of alumina nanoparticles filled PVA–PVP blend matrix-based polymer nanocomposites, Polym. Compos. 39, E1788 (2018).

    [28] [28] B. M. Baraker and B. Lobo, Multistage thermal decomposition in films of cadmium chloride-doped PVA–PVP polymeric blend, J. Therm. Anal. Calorim. 134, 865 (2018).

    [29] [29] M. A. Morsi, M. Abdelaziz, A. H. Oraby and I. Mokhles, Struc-tural, optical, thermal, and dielectric properties of polyethylene oxide/carboxymethyl cellulose blend filled with barium titanate, J. Phys. Chem. Solids 125, 103 (2019).

    [30] [30] S. K. Basha, K. Vijay Kumar, G. Sunita Sundari and M. C. Rao, Structural and electrical properties of graphene oxide-doped PVA/ PVP blend nanocomposite polymer films, Adv. Mater. Sci. Eng. 2018 (2018).

    [31] [31] V. Bhavsar and D. Tripathi, Low and high frequency shielding effectiveness of PVC-PPy films, Polymer Bull. Polym. Bull. 75, 2085 (2018).

    [32] [32] J. G. Thangamani, K. Deshmukh, K. K. Sadasivuni, D. Pon-namma, K. S. Goutham, V. Rao and S. K. Pasha, .White graphene reinforced polypyrrole and poly (vinyl alcohol) blend nanocom-posites as chemiresistive sensors for room temperature detection of liquid petroleum gases, Microchim. Acta. 184, 3977 (2017).

    [33] [33] R. J. Sengwa, S. Choudhary and P. Dhatarwal, Investigation of alumina nanofiller impact on the structural and dielectric proper-ties of PEO/PMMA blend matrix-based polymer nanocomposites, Adv. Compos. Hybrid Mater. 2, 162 (2019).

    [34] [34] B. Chatterjee, N. Kulshrestha and P. N. Gupta, Electrical properties of starch-PVA biodegradable polymer blend, Phys. Scr. 90, 025805 (2015).

    [35] [35] V. Bhavsar and D. Tripathi, Surface and dielectric studies of PVC-PVP blend films for green electronics, Indian J. Pure Appl. Phys. 56, 696 (2018).

    [36] [36] A. Arya, M. Sadiq and A. L. Sharma, Effect of variation of dif-ferent nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites, Ionics 24, 2295 (2018).

    [37] [37] K. Manna, S. K. Srivastava and V. Mittal, Role of enhanced hydro-gen bonding of selectively reduced graphite oxide in fabrication of poly (vinyl alcohol) nanocomposites in water as EMI shielding material, J. Phys. Chem. C 120, 17011 (2016).

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Investigation of the effect of in-situ grown PPy on low frequency dielectric properties and other properties of PVA–PVP blend film[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150020

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 10, 2021

    Accepted: --

    Published Online: Feb. 22, 2022

    The Author Email: (sushmajha31@gmail.com)

    DOI:10.1142/s2010135x2150020x

    Topics