Laser & Optoelectronics Progress, Volume. 55, Issue 10, 101504(2018)

Face Recognition by Feature Matching Fusion Combined with Improved Convolutional Neural Network

Li Jiani and Zhang Baohua*
Author Affiliations
  • [in Chinese]
  • show less
    References(28)

    [1] [1] Zuo D Y. A study of face detection based on Adaboost algorithm[D]. Hefei: University of Science and Technology of China, 2009: 1-2.

    [2] [2] Chen H J. The comparison research of some algorithms of biological recognition[J]. Journal of the Hebei Academy of Sciences, 2007, 24(4): 33-37.

    [3] [3] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2: 37-52.

    [4] [4] Lu J W, Plataniotis K N, Venetsanopoulos A N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition[J]. Pattern Recognition Letters, 2005, 26(2): 181-191.

    [5] [5] Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Transactions on Neural Networks, 2002, 13(6): 1450-1464.

    [6] [6] Zhang Y, Hua C J. Driver fatigue recognition based on facial expression analysis using local binary patterns[J]. Optik, 2015, 126(23): 4501-4505.

    [7] [7] Lowe D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

    [8] [8] Xu X M, Quan C Q, Ren F J. Facial expression recognition based on Gabor wavelet transform and histogram of oriented gradients[C]∥IEEE International Conference on Mechatronics and Automation (ICMA), 2015: 2117-2122.

    [9] [9] Yoo C H, Kim S W, Jung J Y, et al. High-dimensional feature extraction using bit-plane decomposition of local binary patterns for robust face recognition[J]. Journal of Visual Communication and Image Representation, 2017, 45: 11-19.

    [10] [10] Albiol A, Monzo D, Martin A, et al. Face recognition using HOG-EBGM[J]. Pattern Recognition Letters, 2008, 29(10): 1537-1543.

    [11] [11] Shan C F, Gong S G, McOwan P W. Facial expression recognition based on local binary patterns: a comprehensive study[J]. Image and Vision Computing, 2009, 27(6): 803-816.

    [12] [12] Ojala T, Pietikinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.

    [13] [13] Chen D, Cao X D, Wen F, et al. Higher is better: high-dimensional feature and its efficient compression for face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 1-8.

    [14] [14] Pang Y W, Yuan Y, Li X L, et al. Efficient HOG human detection[J]. Signal Processing, 2011, 91(4): 773-781.

    [15] [15] Yu J, Qin Z C, Wan T, et al. Feature integration analysis of bag-of-features model for image retrieval[J]. Neurocomputing, 2013, 120: 355-364.

    [16] [16] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

    [17] [17] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolution neural networks[C]∥Neural Information Processing Systems Conference, 2012: 1097-1105.

    [18] [18] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]∥International Conference on Learning Representations (ICLR), 2014: 1-2.

    [19] [19] Xu L, Zhao H T, Sun S Y. Monocular infrared image depth estimation based on deep convolutional neural networks[J]. Acta Optica Sinica, 2016, 36(7): 0715002.

    [21] [21] Long H Q, Tan T Z. Based on the depth of the convolution network and local binary pattern of face recognition[J].Computer Simulation, 2017, 34(1): 322-325.

    [22] [22] He K M, Sun J. Convolution neural networks at constrained time cost[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5353-5360.

    [23] [23] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 1886-1893.

    [24] [24] Wan Y, Li H H, Wu K F, et al. Fusion with layered features of LBP and HOG for face recognition[J]. Journal of Computer-Aided Design and Computer Graphics, 2015, 27(4): 640-650.

    [25] [25] Chen M S, Cai Z S. Study on fusion of visual and infrared images based on NSCT[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061002.

    [26] [26] Zhang L B, Zhang J. A new adaptive fusion method based on saliency analysis for remote sensing images[J]. Chinese Journal of Lasers, 2015, 42(1): 0114001.

    [27] [27] Fan R E, Chen P H, Lin C J. Working set selection using second order information for training SVM[J]. Journal of Machine Learning Research, 2005, 6(4): 1889-1918.

    [28] [28] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.

    Tools

    Get Citation

    Copy Citation Text

    Li Jiani, Zhang Baohua. Face Recognition by Feature Matching Fusion Combined with Improved Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101504

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 25, 2018

    Accepted: --

    Published Online: Oct. 14, 2018

    The Author Email: Baohua Zhang (zbh_wj2004@imust.cn)

    DOI:10.3788/lop55.101504

    Topics