Optoelectronics Letters, Volume. 20, Issue 11, 654(2024)
Impact of dark current on pinned photo-diode capacitance of CMOS image sensor in low illumination regime
[1] [1] MA J, CHAN S, FOSSUM E R. Review of quanta image sensors for ultralow-light imaging[J]. IEEE transactions on electron devices, 2022, 69(6): 2824-2839.
[2] [2] ANTONSANTI A. Probing dark current random telegraph signal in a small pitch vertically pinned photodiode CMOS image sensor after proton irradiation[J]. IEEE transactions on nuclear science, 2022, 69(7): 1506-1514.
[3] [3] AO J, GAO Z, GAO J, et al. A dynamic photoresponse model for a pinned photodiode in CMOS image sensors[J]. Optoelectronics letters, 2022, 18(6): 419-424.
[4] [4] SUHARWERDI M, QAZI G. Dark current in pinned photodiode CMOS image sensors: a pre-fabrication physics-based model[J]. Optical and quantum electronics, 2023, 55: 581.
[5] [5] MCGRATH D. Dark current limiting mechanisms in CMOS image sensors[J]. Electronic imaging, 2018, 30(11): 3541-3548.
[6] [6] TAN J, BUTTGEN B, THEUWISSEN A J P. Analyzing the radiation degradation of 4-transistor deep submicron technology CMOS image sensors[J]. IEEE sensors journal, 2012, 12(6): 2278-2286.
[7] [7] GOIFFON V. Pixel level characterization of pinned photodiode and transfer gate physical parameters in CMOS image sensors[J]. IEEE journal of the electron devices society, 2014, 2(4): 65-76.
[8] [8] CAPOCCIA R, BOUKHAYMA A, JAZAERI F. Compact modeling of charge transfer in pinned photodiodes for CMOS image sensors[J]. IEEE transactions on electron devices, 2019, 66(1): 160-168.
[9] [9] SHI J. A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion[J]. Nature nanotechnology, 2022, 17: 1288-1293.
[10] [10] KHAN U, SARKAR M. Dynamic capacitance model of a pinned photodiode in CMOS image sensors[J]. IEEE transactions on electron devices, 2018, 65(7): 2892-2898.
[11] [11] HU C, ZHANG B, XIN Y, et al. Analytical modeling of charge behavior in pinned photodiode for CMOS image sensors[J]. IEEE sensors journal, 2023, 23(13): 14295-14303.
[12] [12] ZHANG K. 4T complementary metal oxide semiconductor image sensor charge transfer efficiency optimization[J]. Journal of nanoelectronics and optoelectronics, 2023, 18(4), 428-434.
[13] [13] MARCELOT O. Dark current sharing and cancellation mechanisms in CMOS image sensors analyzed by TCAD simulations[J]. IEEE transactions on electron devices, 2017, 64(12): 4985-4991.
[14] [14] DAN M. Dark current model for the time of low noise& photon counting[C]//2021 International Image Sensor Workshop (IISW), September 20-23, 2021, Online.
[15] [15] ABARCA A, THEUWISSEN A. A CMOS image sensor dark current compensation using in-pixel temperature sensors[J]. Sensors, 2023, 23: 9109.
[16] [16] MARCELOT O. Exploration of pinned photodiode radiation hardening solutions through TCAD simulations[J]. IEEE transactions on electron devices, 2019, 66(8): 3411-3416.
[17] [17] PIERRET R F. Advanced semiconductor fundamentals[M]. 2nd ed. New York: Prentice Hall, 2003.
[18] [18] KHAN U, SARKAR M. Analysis of charge transfer potential barrier in pinned photodiode of CMOS image sensors[J]. IEEE transactions on electron devices, 2021, 68(6): 2770-2777.
[19] [19] CHAO C Y, CHEN Y, CHOU K, et al. Extraction and estimation of pinned photodiode capacitance in CMOS image sensors[J]. IEEE journal of the electron devices society, 2014, 2(4): 59-64.
[20] [20] YUE X, FOSSUM E R. Design and characterization of a burst mode 20 Mfps low noise CMOS image sensor[J]. Sensors, 2023, 23: 6356.
Get Citation
Copy Citation Text
Mohsin Suharwerdi, Gausia Qazi. Impact of dark current on pinned photo-diode capacitance of CMOS image sensor in low illumination regime[J]. Optoelectronics Letters, 2024, 20(11): 654
Category: PAPERS
Received: Jan. 2, 2024
Accepted: Dec. 25, 2024
Published Online: Dec. 25, 2024
The Author Email: