Laser & Optoelectronics Progress, Volume. 60, Issue 4, 0428001(2023)

Scene Classification of Remote Sensing Images Guided by Fine-Grained Salient Region

Feiyang Li, Jiangtao Wang*, and Ziyang Wang
Author Affiliations
  • School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui, China
  • show less
    References(30)

    [1] Franklin S E, Wulder M A. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas[J]. Progress in Physical Geography: Earth and Environment, 26, 173-205(2002).

    [2] Larsen S Ø, Koren H, Solberg R. Traffic monitoring using very high resolution satellite imagery[J]. Photogrammetric Engineering & Remote Sensing, 75, 859-869(2009).

    [3] Sunar F, Özkan C. Forest fire analysis with remote sensing data[J]. International Journal of Remote Sensing, 22, 2265-2277(2001).

    [4] Yan L, Zhu R X, Mo N et al. Improved class-specific codebook with two-step classification for scene-level classification of high resolution remote sensing images[J]. Remote Sensing, 9, 223(2017).

    [5] Walton N S, Sheppard J W, Shaw J A. Using a genetic algorithm with histogram-based feature selection in hyperspectral image classification[C], 1364-1372(2019).

    [6] Yang Y, Newsam S. Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing, 51, 818-832(2013).

    [7] Cheng G, Han J W, Zhou P C et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 119-132(2014).

    [9] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision Research, 37, 3311-3325(1997).

    [10] Zhou W X, Shao Z F, Diao C Y et al. High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder[J]. Remote Sensing Letters, 6, 775-783(2015).

    [11] Wei X S, Luo J H, Wu J X et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE Transactions on Image Processing, 26, 2868-2881(2017).

    [12] Cheng Y Q, Wang Y, Fan Y Y et al. Lightweight object detection network based on convolutional neural network[J]. Laser & Optoelectronics Progress, 58, 1610023(2021).

    [13] Wang P, Liu R, Xin X J et al. Scene classification of optical remote sensing images based on residual networks[J]. Laser & Optoelectronics Progress, 58, 0210001(2021).

    [14] Liu M J, Cao Y Z, Zhu S Y et al. Feature fusion video target tracking method based on convolutional neural network[J]. Laser & Optoelectronics Progress, 57, 041502(2020).

    [15] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [16] Paszke A, Gross S, Massa F et al. PyTorch: an imperative style, high-performance deep learning library[C], 8024-8035(2019).

    [17] Alhichri H, Alswayed A S, Bazi Y et al. Classification of remote sensing images using EfficientNet-B3 CNN model with attention[J]. IEEE Access, 9, 14078-14094(2021).

    [18] Anwer R M, Khan F S, van de Weijer J et al. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 74-85(2018).

    [19] Wu H, Liu B Z, Su W H et al. Deep filter banks for land-use scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 13, 1895-1899(2016).

    [20] Yu Y L, Li X Z, Liu F X. Attention GANs: unsupervised deep feature learning for aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 519-531(2020).

    [21] Wu H, Liu B Z, Su W H et al. Hierarchical coding vectors for scene level land-use classification[J]. Remote Sensing, 8, 436(2016).

    [22] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017).

    [23] Huang W, Wang Q, Li X L. Feature sparsity in convolutional neural networks for scene classification of remote sensing image[C], 3017-3020(2019).

    [24] Yu Y L, Liu F X. A two-stream deep fusion framework for high-resolution aerial scene classification[J]. Computational Intelligence and Neuroscience, 2018, 8639367(2018).

    [25] Chaib S, Liu H, Gu Y F et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4775-4784(2017).

    [26] Yu Y L, Liu F X. Dense connectivity based two-stream deep feature fusion framework for aerial scene classification[J]. Remote Sensing, 10, 1158(2018).

    [27] Bi Q, Qin K, Zhang H et al. RADC-Net: a residual attention based convolution network for aerial scene classification[J]. Neurocomputing, 377, 345-359(2020).

    [28] Bian X Y, Chen C, Tian L et al. Fusing local and global features for high-resolution scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 2889-2901(2017).

    [29] Zhang J M, Lu C Q, Wang J et al. Training convolutional neural networks with multi-size images and triplet loss for remote sensing scene classification[J]. Sensors, 20, 1188(2020).

    [30] Cheng G, Han J W, Lu X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017).

    Tools

    Get Citation

    Copy Citation Text

    Feiyang Li, Jiangtao Wang, Ziyang Wang. Scene Classification of Remote Sensing Images Guided by Fine-Grained Salient Region[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0428001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 27, 2021

    Accepted: Dec. 21, 2021

    Published Online: Feb. 14, 2023

    The Author Email: Wang Jiangtao (jiangtaoking@126.com)

    DOI:10.3788/LOP212616

    Topics