Optics and Precision Engineering, Volume. 22, Issue 3, 770(2014)

Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction

Yang Hong-cheng1...2,3, Gao Xin3 and Zhang Tao1,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(29)

    [1] [1] LI L, XING Y X, CHEN ZH Q, et al..A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT[J].Journal of X-Ray Science and Technology, 2011, 19(3): 355-371.

    [3] [3] GERCHBERG R.Super-resolution through error energy reduction [J].Journal of Modern Optics, 1974, 21(9): 709-720.

    [4] [4] PAPOULIS A.A new algorithm in spectral analysis and band-limited extrapolation[J].IEEE Transactions on Circuits and Systems, 1975, 22(9): 735-742.

    [5] [5] JIANG M, WANG G.Development of iterative algorithms for image reconstruction [J].Journal of X-Ray Science and Technology, 2002, 10(1-2): 77-86.

    [6] [6] SONG B, PARK J, SONG W.A novel, fast, variable step size gradient method for solving Simultaneous Algebraic Reconstruction Technique (SART) type reconstructions: an example application to CBCT [J].Medical Physics, 2011, 38: 3444.

    [7] [7] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    [8] [8] CANDES E J, ROMBERG J K, TAO T.Stable signal recovery from incomplete and inaccurate measurements [J].Communications on pure and applied mathematics, 2006, 59(8): 1207-1223.

    [9] [9] KUNG H T, YU C M.Reducing reconciliation communication cost with compressed sensing [J].Journal of Latex Class Files, 2010, 6(1): 1-4.

    [10] [10] LAUZIER P T, TANG J, CHEN G H.Prior image constrained compressed sensing: implementation and performance evaluation[J].Medical Physics, 2012, 39(1): 66.

    [11] [11] HAGER W W, PHAN D T, ZHANG H CH.Gradient-based methods for sparse recovery[J].SIAM J. Imaging Sci., 2011, 4(1): 146-165.

    [13] [13] VOLZ R, CLOSE S.Inverse filtering of radar signals using compressed sensing with application to meteors [J].Radio Science, 2012, 47(6): RS0N05.

    [14] [14] XU Y, ZUO W M, FAN ZH.Supervised sparse representation method with a heuristic strategy and face recognition experiments[J].Neurocomputing, 2012, 79: 125-131.

    [15] [15] HUANG Z X, LIU Y G, LI C G, et al..A robust face and ear based multimodal biometric system using sparse representation[J].Pattern Recognition, 2013, 46(8): 2156-2168.

    [16] [16] SHIM B, SONG B.Multiuser detection via compressive sensing[J].IEEE Communications Letters, 2012, 16(7): 972-974.

    [17] [17] VERA R I, SACCHI M, GU Y J.A compressive sensing framework for seismic source parameter estimation [J].Geophysical Journal International, 2012, 191(3): 1226-1236.

    [20] [20] KRZAKALA F, MEZARD M, SAUSSET F, et al..Statistical-physics-based reconstruction in compressed sensing[J].Physical Review X, 2012, 2(2): 021005.

    [21] [21] BECKER S, BOBIN J, CANDES E J.NESTA: a fast and accurate first-order method for sparse recovery [J].SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39.

    [22] [22] JENSEN T L, JRGENSEN J H, HANSEN P C, et al..Implementation of an optimal first-order method for strongly convex total variation regularization[J].BIT Numerical Mathematics, 2012, 52(2): 329-356.

    [23] [23] SIDKY E Y, PAN X.Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J].Physics in Medicine and Biology, 2008, 53(17): 4777.

    [24] [24] PARK J C, SONG B V, KIM J S, et al..Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT [J].Medical Physics, 2012, 39(3): 1207.

    [25] [25] HYBERTS S G, MILBRADT A G, WAGNER A B, et al..Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling [J].Journal of Biomolecular NMR, 2012, 52(4): 315-327.

    [26] [26] HE B, LIAO L Z, WANG X.Proximal-like contraction methods for monotone variational inequalities in a unified framework[J].Computational Optimization and Applications, 2012, 51(2): 649-679.

    [27] [27] DAI Y H, FLETCHER R.Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J].Numerische Mathematik, 2005, 100(1): 21-47.

    [28] [28] AUBIN J P.Lipschitz behavior of solutions to convex minimization problems[J].Mathematics of Operations Research, 1984, 9(1): 87-111.

    CLP Journals

    [1] WANG Zhong-liang, FENG Yan, WANG Li. Compressive sensing imaging and reconstruction of pushbroom hyperspectra[J]. Optics and Precision Engineering, 2014, 22(11): 3129

    [2] ZHANG Hai-bo, GENG Guo-hua, YI Huang-jian, JIA Tao, HE Xiao-wei. Comparison between pencil-beam and cone-beam in XLCT system[J]. Optics and Precision Engineering, 2016, 24(5): 986

    [3] LI Ming, ZHENG Jian3, ZHANG Cheng, ZHOU Zhe, ZHANG Tao. Suppression of metal artifact in computed tomography by reweighted total variation reconstruction[J]. Optics and Precision Engineering, 2015, 23(6): 1714

    [4] GAO Hong-xia, XIE Jian-he, ZENG Run-hao, WU Zi-ling, MA Ge. Sparse reconstruction method based on integrating data fidelity term and sparse constraint term[J]. Optics and Precision Engineering, 2017, 25(9): 2437

    Tools

    Get Citation

    Copy Citation Text

    Yang Hong-cheng, Gao Xin, Zhang Tao. Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction[J]. Optics and Precision Engineering, 2014, 22(3): 770

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 25, 2013

    Accepted: --

    Published Online: Apr. 24, 2014

    The Author Email: Tao Zhang (zhangt@ciomp.ac.cn)

    DOI:10.3788/ope.20142203.0770

    Topics