Journal of Advanced Dielectrics, Volume. 15, Issue 2, 2450016(2025)

Heterophase states in ferroelectric solid solutions of sodium, potassium and cadmium niobates

M. O. Moysa*, V. Yu. Topolov, L. A. Shilkina, K. P. Andryushin, and L. A. Reznichenko
References(37)

[1] Y. Xu. Ferroelectric Materials and Their Applications(1991).

[2] N. Udomkan, P. Limsuwan, T. Tunkasiri. Effect of rare-earth (RE=La, Nd, Ce and Gd) doping on the piezoelectric of PZT(52:48) ceramics. Int. J. Mod. Phys. B, 26, 4549(2007).

[3] A. M. H. Khan, M. Prabu, A. K. Khan, T. K. Sreej. Dielectric and ferroelectric characterization of niobium doped PZT (52/48) nanoceramics. J. Alloys Compd., 967, 171529(2023).

[4] Y. Luo, T. Pu, S. Fan, H. Liu, J. Zhu. Enhanced piezoelectric properties in low-temperature sintering PZN-PZT ceramics by adjusting Zr/Ti ratio. J. Adv. Dielectr., 12, 2250001(2022).

[5] W. Zhuang, W. Wang, Y. Luo, H. Liu, J. Zhu. Enhanced piezoelectric properties in low-temperature sintered Pb(Zr,Ti)O3-based ceramics via Yb2O3 doping. J. Adv. Dielectr., 12, 2340008(2023).

[6] C. Wu, W. Gong, J. Geng, J. Cui, L. Mi, J. Nie, Q. He, J. Li, F.-Z. Yao. Effects of Mn-doping on the structure and electrical properties of Sm-PMN-PT piezoceramics. J. Adv. Dielectr., 13, 2350004(2023).

[7] C. Chen, Y. Wang, J. Li, C. Wu, G. Yang. Piezoelectric, ferroelectric and pyroelectric properties of (100−x) Pb(Mg1∕3Nb2∕3)O3−xPbTiO3 ceramics. J. Adv. Dielectr., 12, 2250002(2022).

[8] L. Jin, J. Pang, Y. Huang, W. Luo, X. Lu, X. Wei. Dielectric and ferroelectric properties of CuO-doped lead magnesium niobate-based relaxor ferroelectric ceramics. J. Adv. Dielectr., 9, 1950033(2019).

[9] T. Wang, L. Yang, K. Song, Z. Li, Z. Xu. Structure, electrical properties and temperature stability of PIN–PZN–PT piezoelectric ceramics with morphotropic phase boundary compositions. J. Adv. Dielectr., 9, 1950009(2019).

[10] B. Jaffe, W. Cook, H. Jaffe. Piezoelectric Ceramics(1971).

[11] P. K. Panda, B. Sahoo, T. S. Thejas, M. Krishna. High d33 lead-free piezoceramics: A review. J. Electron. Mater., 51, 938(2022).

[12] N. Zhang, T. Zhang, J. Wu. Lead-free (K,Na)NbO3-based materials: Preparation techniques and piezoelectricity. Acs Omega, 5, 3099(2020).

[13] Z. Yang, H. Du, L. Jin, D. Poelman. High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J. Mater. Chem. A, 9, 18026(2021).

[14] C.-B.-W. Liu, Z. Liu, Y. Wang, Y.-X. Liu. Sodium lithium niobate lead-free piezoceramics for high-power applications: Fundamental, progress, and perspective. J. Adv. Ceram., 12, 1(2023).

[15] H. Ma, M. A. Ismael. Preparation and optimization of silver niobate-based lead-free ceramic energy storage materials. Ceram. Int., 48, 32613(2022).

[16] M. A. Rafiq, M. Elisabete, V. Costa, P. M. Vilarinho. Establishing the domain structure of (K0.5Na0.5)NbO3 (KNN) single crystals by piezoforce-response microscopy. Sci. Adv. Mater., 6, 426(2014).

[17] L. Liu, Y. Liu, X. Jiang, Z. Hou. Oriented and ultrafine-grain potassium sodium niobate piezoelectric ceramics prepared by heterogeneous microcrystalline transformation. Ceram. Int., 49, 30897(2023).

[18] Y. Zhang, J.-F. Li. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J. Mater. Chem. C, 7, 4284(2019).

[19] X. Lv, J. Wu, J. Zhu, D. Xiao, X. Zhang. J. Eur. Ceram. Soc., 38, 85(2018).

[20] L. Jiang, Y. Li, L. Xie, J. Wu, Q. Chen, W. Zhang, D. Xiao, J. Zhu. J. Mater. Sci.: Mater. Electron., 28, 1(2017).

[21] K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu. Adv. Mater., 28, 8519(2016).

[22] W. Wu, M. Chen, B. Wu, Y. Ding, C. Liu. J. Alloys Compd., 695, 1175(2017).

[23] P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang. Adv. Mater., 30, 1705171(2018).

[24] X. Qi, P. Ren, X. Tong. Effect of heterovalent-ion doping and oxygen-vacancy regulation on piezoelectric properties of KNN based lead-free ceramics. Ceram. Int., 49, 34795(2023).

[25] D. Deng, M. S. Irshad, X. Kong, P. Panfilov, L. Yang, J. Guo. Potassium sodium niobate-based transparent ceramics with high piezoelectricity and enhanced energy storage density. J. Alloys Compd., 953, 170081(2023).

[26] Y. Huan, J. Li, Y. Hong, Y. Liu, T. Wei, X. Wang. Domain reorientation and electric-field-induced phase transition in (K,Na)(Nb,Sb)O3-(Bi,Na)ZrO3 piezoceramics. Ceram. Int., 49, 39021(2023).

[27] B. Lewis, E. A. D. White. Structure and phase transitions of ferroelectric sodium cadmium niobates. J. Electronics Control, 1, 646(1957).

[28] K. Andryushin, L. Shilkina, I. Andryushina, A. Nagaenko, M. Moysa, S. Dudkina, L. Reznichenko. Features of the structure and electrophysical properties of solid solutions of the system (1-x-y) NaNbO3-xKNbO3yCd0.5NbO3. Materials, 14, 4009(2021).

[29] M. O. Moysa, A. V. Nagaenko, L. A. Shilkina, K. P. Andryushin, I. N. Andryushina, L. A. Reznichenko, D. I. Rudskiy, A. G. Rudskaya. The influence of the internal structure on the polarization properties of the solid solutions of the three-component system of the sodium–potassium–cadmium niobates. Ferroelectrics, 575, 64(2021).

[30] M. O. Moysa, V. Yu. Topolov, L. A. Shilkina, K. P. Andryushin, L. A. Reznichenko. Analysis of non-180∘ domain structures in lead-free ferroelectric solid solutions based on NaNbO3 and KNbO3, perovskites and CdNb2O6 coulombite. Ferroelectrics, 598, 35(2022).

[31] M. O. Moysa, V. Yu. Topolov, K. P. Andryushin, A. V. Nagaenko, L. A. Shilkina, M. V. Il’ina, O. I. Soboleva, S. Sahoo, L. A. Reznichenko. Ferroelectric solid solutions with perovskite- and columbite-type components: From structures formation to domain and hysteresis phenomena. J. Adv. Dielectr., 13, 2250023(2023).

[32] E. G. Fesenko. The Perovskite Family and Ferroelectricity(1972).

[33] E. G. Fesenko, V. G. Gavrilyachenko, A. F. Semenchev. Domain Structure of Multiaxial Ferroelectric Crystals(1990).

[34] A. L. Roitburd. The theory of the formation of a heterophase structure in phase transformations in solids. Sov. Phys. Uspekhi, 17, 326(1974).

[35] M. S. Wechsler, D. S. Lieberman, T. A. Read. On the theory of the formation of martensite. Trans. AIME J. Metals, 197, 1503(1953).

[36] V. Yu. Topolov. Heterogeneous Ferroelectric Solid Solutions: Phases and Domain States(2018).

[37] J. Fousek, V. Janovec. The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys., 40, 135(1969).

Tools

Get Citation

Copy Citation Text

M. O. Moysa, V. Yu. Topolov, L. A. Shilkina, K. P. Andryushin, L. A. Reznichenko. Heterophase states in ferroelectric solid solutions of sodium, potassium and cadmium niobates[J]. Journal of Advanced Dielectrics, 2025, 15(2): 2450016

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Feb. 22, 2024

Accepted: Jun. 17, 2024

Published Online: Feb. 18, 2025

The Author Email: Moysa M. O. (moysa@sfedu.ru)

DOI:10.1142/S2010135X24500164

Topics