Infrared and Laser Engineering, Volume. 53, Issue 1, 20230411(2024)
Dual wavelength output Nd: YAG solid-state laser based on spectral beam combining
[1] Liu Juan, Zhang Yang, Wang Sanzhao, et al. Investigation of all solid state end-pumped Nd: YAG
[2] Wu Bo, Jiang Peipei, Yang Dingzhong, et al. Compact dual-wavelength Nd: GdVO4 aser working at 1063 and 1065 nm[J]. Opt Express, 17, 6004-6009(2009).
[3] Zhong Kai, Zhang Xianzhong, Xu Degang, . Research progress in all solid-state dual wavelength lasers (invited)[J]. Electro-Optic Technology Application, 37, 13-26, 78(2022).
[4] Wu Ye, Zheng Chenqi, Chen Ruitao, . Based on electro-optic Q-switched 1 064 nm/532 nm/570 nm three wavelength solid-state laser[J]. Laser Technology, 43, 91-95(2019).
[5] Abdelsalam D G, Magnusson R, Kim D. Single-shot, dual-wavelength digital holography based on polarizing separation[J]. Appl Opt, 50, 3360-3368(2011).
[6] Li Jiwu, Li Zhongyang, Zhong Kai, . Electro optic
[7] Bai Zhenxu, Chen Hui, Zhang Zhanpeng, . 100 W level 1.2/1.5 μm dual wavelength diamond Raman laser (
[8] Tu Zhihua, Dai Shibo, Zhu Siqi, et al. Efficient high-power orthogonally-polarized dual-wavelength Nd: YLF laser at 1 314 and 1 321 nm[J]. Opt Express, 27, 32949-32957(2019).
[9] Zhao Xin, Hu Guoqing, Zhao Bofeng, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Opt Express, 24, 21833-21845(2016).
[10] Huang Tailun, Sung Chenglin, Cheng Haoping, et al. Synchronized self-mode-locked 1 061-nm and 1 064-nm monolithic Nd: YAG laser at cryogenic temperatures with two orthogonally polarized emissions: generation of 670 GHz beating[J]. Opt Express, 24, 22189-22197(2016).
[11] Huang Y J, Cho H H, Liang H C, et al. Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded Nd: YVO4/Nd: GdVO4 crystal[J]. Opt Mater Express, 5, 2136-2141(2015).
[12] Yan Ying, Luo Yu, Pan Qing, . Watt level continuous dual wavelength output Nd: YAP/KTP frequency stabilized laser[J]. Chinese Journal of Lasers, 31, 513-517(2004).
[14] Meng Huicheng, Wu Deyong, Tan Hao, . Experimental study on grating external cavity spectral beam combination of narrow spectral high brightness semiconductor lasers[J]. Chinese Journal of Lasers, 42, 0302003(2015).
[15] Wang Hanbin, Yang Yifeng, Yuan Zhijun, . Research progress on fiber laser spectral beamforming and grating thermal effect[J]. High Power Laser and Particle Beams, 32, 121002(2020).
[16] Chen Ji, Jin Yuan, Gao Liang, et al. Wavelength beam-combining of terahertz quantum-cascade laser arrays[J]. Opt Lett, 46, 1864-1867(2021).
[17] [17] Huang R K, Chann B, Burgess J, et al. Teradiode’s high brightness semiconduct lasers [C]Proceedings of SPIE, 2016, 9730: 97300C.
[18] Song Jiaxin, Ren Shuai, Liu Wei, . 1.5 kW level high-power random fiber laser[J]. Infrared and Laser Engineering, 50, 20210347(2021).
[19] [19] Goldberg L, tleton J, Schilling B, et al. Compact laser sources f laser designation, ranging active imaging [C]Proceedings of SPIE, 2007, 6552: 65520G.
[20] [20] Singh S, Smith R G, Uitert L G V. Stimulatedemission cross section fluescent quantum efficiency of Nd3+ in yttrium aluminum gar at room temperature [J]. Phys Rev B, 1974, 10(6): 25662572.
[21] Zhu Zhanda, Wu Weichong, Wang Luda, et al. Dual-wavelength laser source by spectral beam combining of two Nd: YAG pulse lasers[J]. Appl Opt, 62, 1939-1942(2023).
Get Citation
Copy Citation Text
Luda Wang, Weichong Wu, Zhanda Zhu, Zhenxu Bai, Yongling Hui, Hong Lei, Qiang Li. Dual wavelength output Nd: YAG solid-state laser based on spectral beam combining[J]. Infrared and Laser Engineering, 2024, 53(1): 20230411
Category:
Received: Jul. 6, 2023
Accepted: --
Published Online: Mar. 19, 2024
The Author Email: