Acta Photonica Sinica, Volume. 53, Issue 5, 0553104(2024)

Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)

Xiaotian CHENG1... Lingfang WANG1, Jiawang YU1, Shuning DING1, Zhibo NI1, Hongbin WANG1, Xiaoqing ZHOU2 and Chaoyuan JIN1,* |Show fewer author(s)
Author Affiliations
  • 1College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China
  • 2School of Science,Westlake University,Hangzhou 310030,China
  • show less
    References(143)

    [1] R LOUDON. The quantum theory of light. OUP Oxford(2000).

    [2] E M PURCELL. Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681-681(1946).

    [3] E YABLONOVITCH. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58, 2059-2062(1987).

    [4] S JOHN. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58, 2486-2489(1987).

    [5] S NODA, M FUJITA, T ASANO. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 1, 449-458(2007).

    [6] P LODAHL, A FLORIS VAN DRIEL, I S NIKOLAEV et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 430, 654-657(2004).

    [7] J T HUGALL, A SINGH, N F VAN HULST. Plasmonic cavity coupling. ACS Photonics, 5, 43-53(2018).

    [8] S HAROCHE, D KLEPPNER. Cavity quantum electrodynamics. Physics Today, 42, 24-30(1989).

    [9] J I CIRAC, P ZOLLER, H J KIMBLE et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Physical Review Letters, 78, 3221-3224(1997).

    [10] R JOHNE, R SCHUTJENS, S FATTAH POOR et al. Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system. Physical Review A, 91, 063807(2015).

    [11] C Y JIN, R JOHNE, M Y SWINKELS et al. Ultrafast non-local control of spontaneous emission. Nature Nanotechnology, 9, 886-890(2014).

    [12] S CHEN, H FRANCIS, HHO C et al. Control of quality factor in laterally coupled vertical cavities. IET Optoelectronics, 14, 100-103(2020).

    [13] P LODAHL, S MAHMOODIAN, S STOBBE. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 87, 347-400(2015).

    [14] K Y JEONG, M S HWANG, J KIM et al. Recent progress in nanolaser technology. Advanced Materials, 32, 2001996(2020).

    [15] A EINSTEIN. Zur quantentheorie der strahlung. Hirzel Leipzig(1917).

    [16] A M FOX. Quantum optics: an introduction(2006).

    [17] L NOVOTNY, B HECHT. Principles of nano-optics(2012).

    [18] W L BARNES, S A R HORSLEY, W L VOS. Classical antennas, quantum emitters, and densities of optical states. Journal of Optics, 22, 073501(2020).

    [19] A V KAVOKIN, J J BAUMBERG, G MALPUECH et al. Microcavities(2017).

    [20] B ROMEIRA, A FIORE. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers. IEEE Journal of Quantum Electronics, 54, 1-12(2018).

    [21] J D JOANNOPOULOS, P R VILLENEUVE, S FAN. Photonic crystals: putting a new twist on light. Nature, 386, 143-149(1997).

    [22] J CLAUDON, J BLEUSE, N S MALIK et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 4, 174-177(2010).

    [23] Y WEI, S LIU, X LI et al. Tailoring solid-state single-photon sources with stimulated emissions. Nature Nanotechnology, 17, 470-476(2022).

    [24] H WANG, Y M HE, T H CHUNG et al. Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770-775(2019).

    [25] N TOMM, A JAVADI, N O ANTONIADIS et al. A bright and fast source of coherent single photons. Nature Nanotechnology, 16, 399-403(2021).

    [26] X LIU, T GALFSKY, Z SUN et al. Strong light-matter coupling in two-dimensional atomic crystals. Nature Photonics, 9, 30-34(2015).

    [27] K SRINIVASAN, O PAINTER. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature, 450, 862-865(2007).

    [28] S ATES, I AGHA, A GULINATTI et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Scientific Reports, 3, 1397(2013).

    [29] Ł DUSANOWSKI, D KÖCK, E SHIN et al. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators. Nano Letters, 20, 6357-6363(2020).

    [30] A BROOKS, X L CHU, Z LIU et al. Integrated whispering-gallery-mode resonator for solid-state coherent quantum photonics. Nano Letters, 21, 8707-8714(2021).

    [31] T J KIPPENBERG, A L TCHEBOTAREVA, J KALKMAN et al. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity. Physical Review Letters, 103, 027406(2009).

    [32] C JAVERZAC-GALY, A KUMAR, R D SCHILLING et al. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Letters, 18, 3138-3146(2018).

    [33] H M DOELEMAN, C D DIELEMAN, C MENNES et al. Observation of cooperative Purcell enhancements in antenna-cavity hybrids. ACS Nano, 14, 12027-12036(2020).

    [34] M V ARTEMYEV, U WOGGON, R WANNEMACHER et al. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Letters, 1, 309-314(2001).

    [35] Y LUO, E D AHMADI, K SHAYAN et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nature Communications, 8, 1413(2017).

    [36] A SINGH, P M DE ROQUE, G CALBRIS et al. Nanoscale mapping and control of antenna-coupling strength for bright single photon sources. Nano Letters, 18, 2538-2544(2018).

    [37] T B HOANG, G M AKSELROD, C ARGYROPOULOS et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nature Communications, 6, 7788(2015).

    [38] R CHIKKARADDY, B DE NIJS, F BENZ et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [39] K HENNESSY, A BADOLATO, M WINGER et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 445, 896-899(2007).

    [40] C L PHILLIPS, A J BRASH, M GODSLAND et al. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity. Scientific Reports, 14, 4450(2024).

    [41] R OHTA, OTA Y , M NOMURA et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Applied Physics Letters, 98, 173104(2011).

    [42] OTA Y , S IWAMOTO, N KUMAGAI et al. Spontaneous two-photon emission from a single quantum dot. Physical Review Letters, 107, 233602(2011).

    [43] F LIU, A J BRASH, J O'HARA et al. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology, 13, 835-840(2018).

    [44] M RAO, F SHI, Z RAO et al. Single photon emitter deterministically coupled to a topological corner state. Light: Science & Applications, 13, 19(2024).

    [45] K KURUMA, OTA Y , M KAKUDA et al. Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots. APL Photonics, 5, 046106(2020).

    [46] Y GONG, M MAKAROVA, S YERCI et al. Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities. Optics Express, 18, 13863-13873(2010).

    [47] H SUMIKURA, E KURAMOCHI, H TANIYAMA et al. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity. Scientific Reports, 4, 5040(2014).

    [48] A M DIBOS, M T SOLOMON, S E SULLIVAN et al. Purcell Enhancement of Erbium Ions in TiO2 on Silicon Nanocavities. Nano Letters, 22, 6530-6536(2022).

    [49] A SIPAHIGIL, R E EVANS, D D SUKACHEV et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 354, 847-850(2016).

    [50] T ASANO, Y OCHI, Y TAKAHASHI et al. Photonic crystal nanocavity with a Q factor exceeding eleven million. Optics Express, 25, 1769-1777(2017).

    [51] E B FLAGG, A MULLER, J W ROBERTSON et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Physics, 5, 203-207(2009).

    [52] D ENGLUND, A FARAON, I FUSHMAN et al. Controlling cavity reflectivity with a single quantum dot. Nature, 450, 857-861(2007).

    [53] M T RAKHER, N G STOLTZ, L A COLDREN et al. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Physical Review Letters, 102, 097403(2009).

    [54] Z QIAN, L SHAN, X ZHANG et al. Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2, 21(2021).

    [55] X DING, Y HE, Z C DUAN et al. On-demand single photons with high extraction eifficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Physical Review Letters, 116, 020401(2016).

    [56] T SATTLER, E PEINKE, J BLEUSE et al. Cavity switching: a novel resource for solid-state quantum optics(2017).

    [57] E PEINKE, T SATTLER, G M TORELLY et al. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. Light: Science & Applications, 10, 215(2021).

    [58] A KINKHABWALA, Z YU, S FAN et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 3, 654-657(2009).

    [59] Q WANG, S STOBBE, P LODAHL. Mapping the local density of optical states of a photonic crystal with single quantum dots. Physical Review Letters, 107, 167404(2011).

    [60] P YAO, V S C MANGA RAO, S HUGHES. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser & Photonics Reviews, 4, 499-516(2010).

    [61] R UPPU, F T PEDERSEN, Y WANG et al. Scalable integrated single-photon source. Science Advances, 6, eabc8268(2020).

    [62] C COUTEAU, S BARZ, T DURT et al. Applications of single photons to quantum communication and computing. Nature Reviews Physics, 5, 326-338(2023).

    [63] Hancong LI, Xiqing CHEN, Jingnan YANG et al. Luminescence and applications of single quantum dots. Chinese Journal of Luminescence, 44, 1251-1272(2023).

    [64] K PENG, S WU, X XIE et al. Giant photocurrent enhancement by coulomb interaction in a single quantum dot for energy harvesting. Physical Review Applied, 11, 024015(2019).

    [65] D A B MILLER, D S CHEMLA, T C DAMEN et al. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect. Physical Review Letters, 53, 2173-2176(1984).

    [66] K PENG, S WU, J TANG et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field. Physical Review Applied, 8, 064018(2017).

    [67] I SöLLNER, S MAHMOODIAN, S L HANSEN et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nature Nanotechnology, 10, 775-778(2015).

    [68] L MIDOLO, F PAGLIANO, T B HOANG et al. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity. Applied Physics Letters, 101, 091106(2012).

    [69] F PAGLIANO, Y CHO, T XIA et al. Dynamically controlling the emission of single excitons in photonic crystal cavities. Nature Communications, 5, 5786(2014).

    [70] M PETRUZZELLA, T XIA, F PAGLIANO et al. Fully tuneable, Purcell-enhanced solid-state quantum emitters. Applied Physics Letters, 107, 141109(2015).

    [71] M PETRUZZELLA, F M PAGLIANO, Ž ZOBENICA et al. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities. Applied Physics Letters, 111, 251101(2017).

    [72] H SIAMPOUR, C O'ROURKE, A J BRASH et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide. npj Quantum Information, 9, 15(2023).

    [73] A IMAMOG, D D AWSCHALOM, G BURKARD et al. Quantum information processing using quantum dot spins and cavity QED. Physical Review Letters, 83, 4204(1999).

    [74] E BIOLATTI, R C IOTTI, P ZANARDI et al. Quantum information processing with semiconductor macroatoms. Physical Review Letters, 85, 5647(2000).

    [75] M BAYER, T GUTBROD, J P REITHMAIER et al. Optical modes in photonic molecules. Physical Review Letters, 81, 2582-2585(1998).

    [76] C T CLAUDE. Manipulating atoms with photons. Physica Scripta, 1998, 33(1998).

    [77] F TIAN, H SUMIKURA, E KURAMOCHI et al. All-optical dynamic modulation of spontaneous emission rate in hybrid optomechanical emitter-cavity systems. Optica, 9, 309-316(2022).

    [78] D BEKELE, Y YU, K YVIND et al. In-plane photonic crystal devices using Fano resonances. Laser & Photonics Reviews, 13, 1900054(2019).

    [79] K NOZAKI, A SHINYA, S MATSUO et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 21, 11877-11888(2013).

    [80] C Y JIN, O WADA. Photonic switching devices based on semiconductor nano-structures. Journal of Physics D: Applied Physics, 47, 133001(2014).

    [81] K NOZAKI, A SHINYA, S MATSUO et al. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 6, 248-252(2012).

    [82] D PELLEGRINO, F PAGLIANO, A GENCO et al. Deterministic control of radiative processes by shaping the mode field. Applied Physics Letters, 112, 161110(2018).

    [83] M MINKOV, V SAVONA. Wide-band slow light in compact photonic crystal coupled-cavity waveguides. Optica, 2, 631-634(2015).

    [84] M BELLO, G PLATERO, J I CIRAC et al. Unconventional quantum optics in topological waveguide QED. Science Advances, 5, eaaw0297(2020).

    [85] Y SATO, Y TANAKA, J UPHAM et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photonics, 6, 56-61(2012).

    [86] E KURAMOCHI, K NOZAKI, A SHINYA et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nature Photonics, 8, 474-481(2014).

    [87] J B KHURGIN, M A NOGINOV. How do the purcell factor, the Q-factor, and the beta factor affect the laser threshold?. Laser & Photonics Reviews, 15, 2000250(2021).

    [88] S STRAUF, F JAHNKE. Single quantum dot nanolaser. Laser & Photonics Reviews, 5, 607-633(2011).

    [89] Y YANG, H ZONG, C MA et al. Self-selection mechanism of Fabry-Perot micro/nanoscale wire cavity for single-mode lasing. Optics Express, 25, 21025-21036(2017).

    [90] J RUAN, D GUO, B NIU et al. Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications. NPG Asia Materials, 14, 62(2022).

    [91] H-R KIM, M-SHWANG , D SMIRNOVA et al. Multipolar lasing modes from topological corner states. Nature Communications, 11, 5758(2020).

    [92] C V SHANK, J E BJORKHOLM, H KOGELNIK. Tunable distributed-feedback dye laser. Applied Physics Letters, 18, 395-396(2003).

    [93] F GU, F XIE, X LIN et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science & Applications, 6, e17061(2017).

    [94] L F WANG, Y R WANG, H FRANCIS et al. Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection. Optics Express, 28, 16486-16496(2020).

    [95] S F LIEW, B REDDING, L GE et al. Active control of emission directionality of semiconductor microdisk lasers. Applied Physics Letters, 104, 231108(2014).

    [96] L GE, O MALIK, H E TÜRECI. Enhancement of laser power-efficiency by control of spatial hole burning interactions. Nature Photonics, 8, 871-875(2014).

    [97] R C KEITEL, M AELLEN, B L FEBER et al. Active mode switching in plasmonic microlasers by spatial control of optical gain. Nano Letters, 21, 8952-8959(2021).

    [98] N BACHELARD, S GIGAN, X NOBLIN et al. Adaptive pumping for spectral control of random lasers. Nature Physics, 10, 426-431(2014).

    [99] B KUMAR, R HOMRI, PRIYANKA et al. Localized modes revealed in random lasers. Optica, 8, 1033-1039(2021).

    [100] Jiachen LIU, Yongzhen HUANG, Youzeng HAO et al. Numerical simulation of noise characteristics for WGM microcavity lasers (invited). Acta Photonica Sinica, 51, 0251205(2022).

    [101] M TANG, Y D YANG, J L WU et al. Dynamical characteristics of twin-microring lasers with mutual optical injection. Journal of Lightwave Technology, 39, 1444-1450(2021).

    [102] S WIECZOREK, W W CHOW. Global view of nonlinear dynamics in coupled-cavity lasers-a bifurcation study. Optics Communications, 246, 471-493(2005).

    [103] C ZHANG, C L ZOU, H DONG et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Science Advances, 3, e1700225(2017).

    [104] B ZHOU, Y ZHONG, M JIANG et al. Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale, 12, 5805-5811(2020).

    [105] L JIN, X CHEN, Y WU et al. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nature Communications, 13, 1727(2022).

    [106] X W MA, Y Z HUANG, Y D YANG et al. Mode coupling in hybrid square-rectangular lasers for single mode operation. Applied Physics Letters, 109, 071102(2016).

    [107] M H ZHUGE, Z YANG, J ZHANG et al. Fiber-integrated reversibly wavelength-tunable nanowire laser based on nanocavity mode coupling. ACS Nano, 13, 9965-9972(2019).

    [108] X SHI, W SONG, D GUO et al. Selectively visualizing the hidden modes in random lasers for secure communication. Laser & Photonics Reviews, 15, 2100295(2021).

    [109] L F WANG, X T CHENG, X D ZHANG et al. Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities. Optics Express, 30, 10229-10238(2022).

    [110] B ELLIS, M A MAYER, G SHAMBAT et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photonics, 5, 297-300(2011).

    [111] D PELLEGRINO, P BUSI, F PAGLIANO et al. Mode-field switching of nanolasers. APL Photonics, 5, 066109(2020).

    [112] C HAN, M LEE, S CALLARD et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array. Light: Science & Applications, 8, 40(2019).

    [113] M PARTO, S WITTEK, H HODAEI et al. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 120, 113901(2018).

    [114] H ZHAO, P MIAO, M H TEIMOURPOUR et al. Topological hybrid silicon microlasers. Nature Communications, 9, 981(2018).

    [115] S WIECZOREK, B KRAUSKOPF, T B SIMPSON et al. The dynamical complexity of optically injected semiconductor lasers. Physics Reports, 416, 1-128(2005).

    [116] T J KIPPENBERG, R HOLZWARTH, S A DIDDAMS. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [117] H GIBBS. Optical bistability: controlling light with light(2012).

    [118] G MARTY, S COMBRIÉ, A DE ROSSI et al. Hybrid InGaP nanobeam on silicon photonics for efficient four wave mixing. APL Photonics, 4, 120801(2019).

    [119] L X ZOU, B W LIU, X M LV et al. Integrated semiconductor twin-microdisk laser under mutually optical injection. Applied Physics Letters, 106, 191107(2015).

    [120] C G MA, J L XIAO, ZX XIAO et al. Chaotic microlasers caused by internal mode interaction for random number generation. Light: Science & Applications, 11, 187(2022).

    [121] Y YU, W XUE, E SEMENOVA et al. Demonstration of a self-pulsing photonic crystal Fano laser. Nature Photonics, 11, 81-84(2017).

    [122] G MARTY, S COMBRIÉ, F RAINERI et al. Photonic crystal optical parametric oscillator. Nature Photonics, 15, 53-58(2021).

    [123] P HAMEL, S HADDADI, F RAINERI et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers. Nature Photonics, 9, 311-315(2015).

    [124] B GARBIN, A GIRALDO, K J H PETERS et al. Spontaneous symmetry breaking in a coherently driven nanophotonic bose-hubbard dimer. Physical Review Letters, 128, 053901(2022).

    [125] K JI, B GARBIN, M HEDIR et al. Non-Hermitian zero-mode laser in a nanophotonic trimer. Physical Review A, 107, L061502(2023).

    [126] F HENTINGER, M HEDIR, B GARBIN et al. Direct observation of zero modes in a non-Hermitian optical nanocavity array. Photonics Research, 10, 574-586(2022).

    [127] G TIRABASSI, K JI, C MASOLLER et al. Binary image classification using collective optical modes of an array of nanolasers. APL Photonics, 7, 090801(2022).

    [128] H FRANCIS, X D ZHANG, S CHEN et al. Optical frequency comb generation via cascaded intensity and phase photonic crystal modulators. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-9(2021).

    [129] E ŞEKER, B OLYAEEFAR, K DADASHI et al. Single-mode quasi PT-symmetric laser with high power emission. Light: Science & Applications, 12, 149(2023).

    [130] Ting FU, Yufei WANG, Xueyou WANG et al. Microstructure lasers based on parity-time symmetry and supersymmetry. Chinese Journal of Lasers, 48, 68-85(2021).

    [131] B QI, H Z CHEN, L GE et al. Parity-time symmetry synthetic lasers: physics and devices. Advanced Optical Materials, 7, 1900694(2019).

    [132] H HODAEI, M-AMIRI , M HEINRICH et al. Parity-time-symmetric microring lasers. Science, 346, 975-978(2014).

    [133] Z GAO, S T M FRYSLIE, B J THOMPSON et al. Parity-time symmetry in coherently coupled vertical cavity laser arrays. Optica, 4, 323-329(2017).

    [134] K H KIM, M S HWANG, H R KIM et al. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains. Nature Communications, 7, 13893(2016).

    [135] K TAKATA, K NOZAKI, E KURAMOCHI et al. Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers. Optica, 8, 184-192(2021).

    [136] L FENG, Z J WONG, R M MA et al. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [137] Z GU, N ZHANG, LYU Q et al. Experimental demonstration of PT-symmetric stripe lasers. Laser & Photonics Reviews, 10, 588-594(2016).

    [138] L WANG, X CHENG, X ZHANG et al. Mode selection in L40 photonic crystal cavities via spatially distributed pumping(2021).

    [139] L WANG, X CHENG, X ZHANG et al. PT symmetric single-mode line-defect photonic crystal lasers with asymmetric loss design. Optics Letters, 47, 6033-6036(2022).

    [140] Shuo LIU, Yuchen WANG, Xiuhua WANG et al. Research progress on single-mode regulation methods for whispering gallery mode microcavities. Progress in Physics, 43, 117-130(2023).

    [141] L LU, J D JOANNOPOULOS, M SOLJAČIĆ. Topological photonics. Nature Photonics, 8, 821-829(2014).

    [142] C W HSU, B ZHEN, A D STONE et al. Bound states in the continuum. Nature Reviews Materials, 1, 16048(2016).

    [143] B MIDYA, H ZHAO, X QIAO et al. Supersymmetric microring laser arrays. Photonics Research, 7, 363-367(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiaotian CHENG, Lingfang WANG, Jiawang YU, Shuning DING, Zhibo NI, Hongbin WANG, Xiaoqing ZHOU, Chaoyuan JIN. Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553104

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Microcavity Photonics

    Received: Feb. 25, 2024

    Accepted: Apr. 9, 2024

    Published Online: Jun. 20, 2024

    The Author Email: JIN Chaoyuan (jincy@zju.edu.cn)

    DOI:10.3788/gzxb20245305.0553104

    Topics