Acta Photonica Sinica, Volume. 53, Issue 5, 0553104(2024)
Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)
[1] R LOUDON. The quantum theory of light. OUP Oxford(2000).
[2] E M PURCELL. Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681-681(1946).
[3] E YABLONOVITCH. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58, 2059-2062(1987).
[4] S JOHN. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58, 2486-2489(1987).
[5] S NODA, M FUJITA, T ASANO. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 1, 449-458(2007).
[6] P LODAHL, A FLORIS VAN DRIEL, I S NIKOLAEV et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 430, 654-657(2004).
[7] J T HUGALL, A SINGH, N F VAN HULST. Plasmonic cavity coupling. ACS Photonics, 5, 43-53(2018).
[8] S HAROCHE, D KLEPPNER. Cavity quantum electrodynamics. Physics Today, 42, 24-30(1989).
[9] J I CIRAC, P ZOLLER, H J KIMBLE et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Physical Review Letters, 78, 3221-3224(1997).
[10] R JOHNE, R SCHUTJENS, S FATTAH POOR et al. Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system. Physical Review A, 91, 063807(2015).
[11] C Y JIN, R JOHNE, M Y SWINKELS et al. Ultrafast non-local control of spontaneous emission. Nature Nanotechnology, 9, 886-890(2014).
[12] S CHEN, H FRANCIS, HHO C et al. Control of quality factor in laterally coupled vertical cavities. IET Optoelectronics, 14, 100-103(2020).
[13] P LODAHL, S MAHMOODIAN, S STOBBE. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 87, 347-400(2015).
[14] K Y JEONG, M S HWANG, J KIM et al. Recent progress in nanolaser technology. Advanced Materials, 32, 2001996(2020).
[15] A EINSTEIN. Zur quantentheorie der strahlung. Hirzel Leipzig(1917).
[16] A M FOX. Quantum optics: an introduction(2006).
[17] L NOVOTNY, B HECHT. Principles of nano-optics(2012).
[18] W L BARNES, S A R HORSLEY, W L VOS. Classical antennas, quantum emitters, and densities of optical states. Journal of Optics, 22, 073501(2020).
[19] A V KAVOKIN, J J BAUMBERG, G MALPUECH et al. Microcavities(2017).
[20] B ROMEIRA, A FIORE. Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers. IEEE Journal of Quantum Electronics, 54, 1-12(2018).
[21] J D JOANNOPOULOS, P R VILLENEUVE, S FAN. Photonic crystals: putting a new twist on light. Nature, 386, 143-149(1997).
[22] J CLAUDON, J BLEUSE, N S MALIK et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics, 4, 174-177(2010).
[23] Y WEI, S LIU, X LI et al. Tailoring solid-state single-photon sources with stimulated emissions. Nature Nanotechnology, 17, 470-476(2022).
[24] H WANG, Y M HE, T H CHUNG et al. Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770-775(2019).
[25] N TOMM, A JAVADI, N O ANTONIADIS et al. A bright and fast source of coherent single photons. Nature Nanotechnology, 16, 399-403(2021).
[26] X LIU, T GALFSKY, Z SUN et al. Strong light-matter coupling in two-dimensional atomic crystals. Nature Photonics, 9, 30-34(2015).
[27] K SRINIVASAN, O PAINTER. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature, 450, 862-865(2007).
[28] S ATES, I AGHA, A GULINATTI et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Scientific Reports, 3, 1397(2013).
[29] Ł DUSANOWSKI, D KÖCK, E SHIN et al. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators. Nano Letters, 20, 6357-6363(2020).
[30] A BROOKS, X L CHU, Z LIU et al. Integrated whispering-gallery-mode resonator for solid-state coherent quantum photonics. Nano Letters, 21, 8707-8714(2021).
[31] T J KIPPENBERG, A L TCHEBOTAREVA, J KALKMAN et al. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity. Physical Review Letters, 103, 027406(2009).
[32] C JAVERZAC-GALY, A KUMAR, R D SCHILLING et al. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Letters, 18, 3138-3146(2018).
[33] H M DOELEMAN, C D DIELEMAN, C MENNES et al. Observation of cooperative Purcell enhancements in antenna-cavity hybrids. ACS Nano, 14, 12027-12036(2020).
[34] M V ARTEMYEV, U WOGGON, R WANNEMACHER et al. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Letters, 1, 309-314(2001).
[35] Y LUO, E D AHMADI, K SHAYAN et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nature Communications, 8, 1413(2017).
[36] A SINGH, P M DE ROQUE, G CALBRIS et al. Nanoscale mapping and control of antenna-coupling strength for bright single photon sources. Nano Letters, 18, 2538-2544(2018).
[37] T B HOANG, G M AKSELROD, C ARGYROPOULOS et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nature Communications, 6, 7788(2015).
[38] R CHIKKARADDY, B DE NIJS, F BENZ et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).
[39] K HENNESSY, A BADOLATO, M WINGER et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 445, 896-899(2007).
[40] C L PHILLIPS, A J BRASH, M GODSLAND et al. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity. Scientific Reports, 14, 4450(2024).
[41] R OHTA, OTA Y , M NOMURA et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Applied Physics Letters, 98, 173104(2011).
[42] OTA Y , S IWAMOTO, N KUMAGAI et al. Spontaneous two-photon emission from a single quantum dot. Physical Review Letters, 107, 233602(2011).
[43] F LIU, A J BRASH, J O'HARA et al. High Purcell factor generation of indistinguishable on-chip single photons. Nature Nanotechnology, 13, 835-840(2018).
[44] M RAO, F SHI, Z RAO et al. Single photon emitter deterministically coupled to a topological corner state. Light: Science & Applications, 13, 19(2024).
[45] K KURUMA, OTA Y , M KAKUDA et al. Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots. APL Photonics, 5, 046106(2020).
[46] Y GONG, M MAKAROVA, S YERCI et al. Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities. Optics Express, 18, 13863-13873(2010).
[47] H SUMIKURA, E KURAMOCHI, H TANIYAMA et al. Ultrafast spontaneous emission of copper-doped silicon enhanced by an optical nanocavity. Scientific Reports, 4, 5040(2014).
[48] A M DIBOS, M T SOLOMON, S E SULLIVAN et al. Purcell Enhancement of Erbium Ions in TiO2 on Silicon Nanocavities. Nano Letters, 22, 6530-6536(2022).
[49] A SIPAHIGIL, R E EVANS, D D SUKACHEV et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 354, 847-850(2016).
[50] T ASANO, Y OCHI, Y TAKAHASHI et al. Photonic crystal nanocavity with a Q factor exceeding eleven million. Optics Express, 25, 1769-1777(2017).
[51] E B FLAGG, A MULLER, J W ROBERTSON et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Physics, 5, 203-207(2009).
[52] D ENGLUND, A FARAON, I FUSHMAN et al. Controlling cavity reflectivity with a single quantum dot. Nature, 450, 857-861(2007).
[53] M T RAKHER, N G STOLTZ, L A COLDREN et al. Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots. Physical Review Letters, 102, 097403(2009).
[54] Z QIAN, L SHAN, X ZHANG et al. Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2, 21(2021).
[55] X DING, Y HE, Z C DUAN et al. On-demand single photons with high extraction eifficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Physical Review Letters, 116, 020401(2016).
[56] T SATTLER, E PEINKE, J BLEUSE et al. Cavity switching: a novel resource for solid-state quantum optics(2017).
[57] E PEINKE, T SATTLER, G M TORELLY et al. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. Light: Science & Applications, 10, 215(2021).
[58] A KINKHABWALA, Z YU, S FAN et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 3, 654-657(2009).
[59] Q WANG, S STOBBE, P LODAHL. Mapping the local density of optical states of a photonic crystal with single quantum dots. Physical Review Letters, 107, 167404(2011).
[60] P YAO, V S C MANGA RAO, S HUGHES. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser & Photonics Reviews, 4, 499-516(2010).
[61] R UPPU, F T PEDERSEN, Y WANG et al. Scalable integrated single-photon source. Science Advances, 6, eabc8268(2020).
[62] C COUTEAU, S BARZ, T DURT et al. Applications of single photons to quantum communication and computing. Nature Reviews Physics, 5, 326-338(2023).
[63] Hancong LI, Xiqing CHEN, Jingnan YANG et al. Luminescence and applications of single quantum dots. Chinese Journal of Luminescence, 44, 1251-1272(2023).
[64] K PENG, S WU, X XIE et al. Giant photocurrent enhancement by coulomb interaction in a single quantum dot for energy harvesting. Physical Review Applied, 11, 024015(2019).
[65] D A B MILLER, D S CHEMLA, T C DAMEN et al. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect. Physical Review Letters, 53, 2173-2176(1984).
[66] K PENG, S WU, J TANG et al. Probing the dark-exciton states of a single quantum dot using photocurrent spectroscopy in a magnetic field. Physical Review Applied, 8, 064018(2017).
[67] I SöLLNER, S MAHMOODIAN, S L HANSEN et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nature Nanotechnology, 10, 775-778(2015).
[68] L MIDOLO, F PAGLIANO, T B HOANG et al. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity. Applied Physics Letters, 101, 091106(2012).
[69] F PAGLIANO, Y CHO, T XIA et al. Dynamically controlling the emission of single excitons in photonic crystal cavities. Nature Communications, 5, 5786(2014).
[70] M PETRUZZELLA, T XIA, F PAGLIANO et al. Fully tuneable, Purcell-enhanced solid-state quantum emitters. Applied Physics Letters, 107, 141109(2015).
[71] M PETRUZZELLA, F M PAGLIANO, Ž ZOBENICA et al. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities. Applied Physics Letters, 111, 251101(2017).
[72] H SIAMPOUR, C O'ROURKE, A J BRASH et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide. npj Quantum Information, 9, 15(2023).
[73] A IMAMOG, D D AWSCHALOM, G BURKARD et al. Quantum information processing using quantum dot spins and cavity QED. Physical Review Letters, 83, 4204(1999).
[74] E BIOLATTI, R C IOTTI, P ZANARDI et al. Quantum information processing with semiconductor macroatoms. Physical Review Letters, 85, 5647(2000).
[75] M BAYER, T GUTBROD, J P REITHMAIER et al. Optical modes in photonic molecules. Physical Review Letters, 81, 2582-2585(1998).
[76] C T CLAUDE. Manipulating atoms with photons. Physica Scripta, 1998, 33(1998).
[77] F TIAN, H SUMIKURA, E KURAMOCHI et al. All-optical dynamic modulation of spontaneous emission rate in hybrid optomechanical emitter-cavity systems. Optica, 9, 309-316(2022).
[78] D BEKELE, Y YU, K YVIND et al. In-plane photonic crystal devices using Fano resonances. Laser & Photonics Reviews, 13, 1900054(2019).
[79] K NOZAKI, A SHINYA, S MATSUO et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Optics Express, 21, 11877-11888(2013).
[80] C Y JIN, O WADA. Photonic switching devices based on semiconductor nano-structures. Journal of Physics D: Applied Physics, 47, 133001(2014).
[81] K NOZAKI, A SHINYA, S MATSUO et al. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 6, 248-252(2012).
[82] D PELLEGRINO, F PAGLIANO, A GENCO et al. Deterministic control of radiative processes by shaping the mode field. Applied Physics Letters, 112, 161110(2018).
[83] M MINKOV, V SAVONA. Wide-band slow light in compact photonic crystal coupled-cavity waveguides. Optica, 2, 631-634(2015).
[84] M BELLO, G PLATERO, J I CIRAC et al. Unconventional quantum optics in topological waveguide QED. Science Advances, 5, eaaw0297(2020).
[85] Y SATO, Y TANAKA, J UPHAM et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photonics, 6, 56-61(2012).
[86] E KURAMOCHI, K NOZAKI, A SHINYA et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nature Photonics, 8, 474-481(2014).
[87] J B KHURGIN, M A NOGINOV. How do the purcell factor, the Q-factor, and the beta factor affect the laser threshold?. Laser & Photonics Reviews, 15, 2000250(2021).
[88] S STRAUF, F JAHNKE. Single quantum dot nanolaser. Laser & Photonics Reviews, 5, 607-633(2011).
[89] Y YANG, H ZONG, C MA et al. Self-selection mechanism of Fabry-Perot micro/nanoscale wire cavity for single-mode lasing. Optics Express, 25, 21025-21036(2017).
[90] J RUAN, D GUO, B NIU et al. Whispering-gallery-mode full-color laser textiles and their anticounterfeiting applications. NPG Asia Materials, 14, 62(2022).
[91] H-R KIM, M-SHWANG , D SMIRNOVA et al. Multipolar lasing modes from topological corner states. Nature Communications, 11, 5758(2020).
[92] C V SHANK, J E BJORKHOLM, H KOGELNIK. Tunable distributed-feedback dye laser. Applied Physics Letters, 18, 395-396(2003).
[93] F GU, F XIE, X LIN et al. Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science & Applications, 6, e17061(2017).
[94] L F WANG, Y R WANG, H FRANCIS et al. Theoretical modelling of single-mode lasing in microcavity lasers via optical interference injection. Optics Express, 28, 16486-16496(2020).
[95] S F LIEW, B REDDING, L GE et al. Active control of emission directionality of semiconductor microdisk lasers. Applied Physics Letters, 104, 231108(2014).
[96] L GE, O MALIK, H E TÜRECI. Enhancement of laser power-efficiency by control of spatial hole burning interactions. Nature Photonics, 8, 871-875(2014).
[97] R C KEITEL, M AELLEN, B L FEBER et al. Active mode switching in plasmonic microlasers by spatial control of optical gain. Nano Letters, 21, 8952-8959(2021).
[98] N BACHELARD, S GIGAN, X NOBLIN et al. Adaptive pumping for spectral control of random lasers. Nature Physics, 10, 426-431(2014).
[99] B KUMAR, R HOMRI, PRIYANKA et al. Localized modes revealed in random lasers. Optica, 8, 1033-1039(2021).
[100] Jiachen LIU, Yongzhen HUANG, Youzeng HAO et al. Numerical simulation of noise characteristics for WGM microcavity lasers (invited). Acta Photonica Sinica, 51, 0251205(2022).
[101] M TANG, Y D YANG, J L WU et al. Dynamical characteristics of twin-microring lasers with mutual optical injection. Journal of Lightwave Technology, 39, 1444-1450(2021).
[102] S WIECZOREK, W W CHOW. Global view of nonlinear dynamics in coupled-cavity lasers-a bifurcation study. Optics Communications, 246, 471-493(2005).
[103] C ZHANG, C L ZOU, H DONG et al. Dual-color single-mode lasing in axially coupled organic nanowire resonators. Science Advances, 3, e1700225(2017).
[104] B ZHOU, Y ZHONG, M JIANG et al. Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale, 12, 5805-5811(2020).
[105] L JIN, X CHEN, Y WU et al. Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator. Nature Communications, 13, 1727(2022).
[106] X W MA, Y Z HUANG, Y D YANG et al. Mode coupling in hybrid square-rectangular lasers for single mode operation. Applied Physics Letters, 109, 071102(2016).
[107] M H ZHUGE, Z YANG, J ZHANG et al. Fiber-integrated reversibly wavelength-tunable nanowire laser based on nanocavity mode coupling. ACS Nano, 13, 9965-9972(2019).
[108] X SHI, W SONG, D GUO et al. Selectively visualizing the hidden modes in random lasers for secure communication. Laser & Photonics Reviews, 15, 2100295(2021).
[109] L F WANG, X T CHENG, X D ZHANG et al. Mode selection in InGaAs/InGaAsP quantum well photonic crystal lasers based on coupled double-heterostructure cavities. Optics Express, 30, 10229-10238(2022).
[110] B ELLIS, M A MAYER, G SHAMBAT et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nature Photonics, 5, 297-300(2011).
[111] D PELLEGRINO, P BUSI, F PAGLIANO et al. Mode-field switching of nanolasers. APL Photonics, 5, 066109(2020).
[112] C HAN, M LEE, S CALLARD et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array. Light: Science & Applications, 8, 40(2019).
[113] M PARTO, S WITTEK, H HODAEI et al. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 120, 113901(2018).
[114] H ZHAO, P MIAO, M H TEIMOURPOUR et al. Topological hybrid silicon microlasers. Nature Communications, 9, 981(2018).
[115] S WIECZOREK, B KRAUSKOPF, T B SIMPSON et al. The dynamical complexity of optically injected semiconductor lasers. Physics Reports, 416, 1-128(2005).
[116] T J KIPPENBERG, R HOLZWARTH, S A DIDDAMS. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).
[117] H GIBBS. Optical bistability: controlling light with light(2012).
[118] G MARTY, S COMBRIÉ, A DE ROSSI et al. Hybrid InGaP nanobeam on silicon photonics for efficient four wave mixing. APL Photonics, 4, 120801(2019).
[119] L X ZOU, B W LIU, X M LV et al. Integrated semiconductor twin-microdisk laser under mutually optical injection. Applied Physics Letters, 106, 191107(2015).
[120] C G MA, J L XIAO, ZX XIAO et al. Chaotic microlasers caused by internal mode interaction for random number generation. Light: Science & Applications, 11, 187(2022).
[121] Y YU, W XUE, E SEMENOVA et al. Demonstration of a self-pulsing photonic crystal Fano laser. Nature Photonics, 11, 81-84(2017).
[122] G MARTY, S COMBRIÉ, F RAINERI et al. Photonic crystal optical parametric oscillator. Nature Photonics, 15, 53-58(2021).
[123] P HAMEL, S HADDADI, F RAINERI et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers. Nature Photonics, 9, 311-315(2015).
[124] B GARBIN, A GIRALDO, K J H PETERS et al. Spontaneous symmetry breaking in a coherently driven nanophotonic bose-hubbard dimer. Physical Review Letters, 128, 053901(2022).
[125] K JI, B GARBIN, M HEDIR et al. Non-Hermitian zero-mode laser in a nanophotonic trimer. Physical Review A, 107, L061502(2023).
[126] F HENTINGER, M HEDIR, B GARBIN et al. Direct observation of zero modes in a non-Hermitian optical nanocavity array. Photonics Research, 10, 574-586(2022).
[127] G TIRABASSI, K JI, C MASOLLER et al. Binary image classification using collective optical modes of an array of nanolasers. APL Photonics, 7, 090801(2022).
[128] H FRANCIS, X D ZHANG, S CHEN et al. Optical frequency comb generation via cascaded intensity and phase photonic crystal modulators. IEEE Journal of Selected Topics in Quantum Electronics, 27, 1-9(2021).
[129] E ŞEKER, B OLYAEEFAR, K DADASHI et al. Single-mode quasi PT-symmetric laser with high power emission. Light: Science & Applications, 12, 149(2023).
[130] Ting FU, Yufei WANG, Xueyou WANG et al. Microstructure lasers based on parity-time symmetry and supersymmetry. Chinese Journal of Lasers, 48, 68-85(2021).
[131] B QI, H Z CHEN, L GE et al. Parity-time symmetry synthetic lasers: physics and devices. Advanced Optical Materials, 7, 1900694(2019).
[132] H HODAEI, M-AMIRI , M HEINRICH et al. Parity-time-symmetric microring lasers. Science, 346, 975-978(2014).
[133] Z GAO, S T M FRYSLIE, B J THOMPSON et al. Parity-time symmetry in coherently coupled vertical cavity laser arrays. Optica, 4, 323-329(2017).
[134] K H KIM, M S HWANG, H R KIM et al. Direct observation of exceptional points in coupled photonic-crystal lasers with asymmetric optical gains. Nature Communications, 7, 13893(2016).
[135] K TAKATA, K NOZAKI, E KURAMOCHI et al. Observing exceptional point degeneracy of radiation with electrically pumped photonic crystal coupled-nanocavity lasers. Optica, 8, 184-192(2021).
[136] L FENG, Z J WONG, R M MA et al. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).
[137] Z GU, N ZHANG, LYU Q et al. Experimental demonstration of PT-symmetric stripe lasers. Laser & Photonics Reviews, 10, 588-594(2016).
[138] L WANG, X CHENG, X ZHANG et al. Mode selection in L40 photonic crystal cavities via spatially distributed pumping(2021).
[139] L WANG, X CHENG, X ZHANG et al. PT symmetric single-mode line-defect photonic crystal lasers with asymmetric loss design. Optics Letters, 47, 6033-6036(2022).
[140] Shuo LIU, Yuchen WANG, Xiuhua WANG et al. Research progress on single-mode regulation methods for whispering gallery mode microcavities. Progress in Physics, 43, 117-130(2023).
[141] L LU, J D JOANNOPOULOS, M SOLJAČIĆ. Topological photonics. Nature Photonics, 8, 821-829(2014).
[142] C W HSU, B ZHEN, A D STONE et al. Bound states in the continuum. Nature Reviews Materials, 1, 16048(2016).
[143] B MIDYA, H ZHAO, X QIAO et al. Supersymmetric microring laser arrays. Photonics Research, 7, 363-367(2019).
Get Citation
Copy Citation Text
Xiaotian CHENG, Lingfang WANG, Jiawang YU, Shuning DING, Zhibo NI, Hongbin WANG, Xiaoqing ZHOU, Chaoyuan JIN. Manipulation of Quantum Vacuum Field for Microcavity Photonics(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553104
Category: Special Issue for Microcavity Photonics
Received: Feb. 25, 2024
Accepted: Apr. 9, 2024
Published Online: Jun. 20, 2024
The Author Email: JIN Chaoyuan (jincy@zju.edu.cn)