Infrared and Laser Engineering, Volume. 50, Issue 3, 20210079(2021)
Development of 1.5 μm lidar for atmospheric detection(Invited)
[1] Dengxin Hua, M Uchida, T Kobayashi. Ultraviolet high-spectral-resolution Rayleigh–Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere. Optics Letters, 29, 1063-1065(2004).
[2] Lingbing Bu, Yazong Zhu, Kunling Shan, et al. Development of probe of cloud droplet. Infrared and Laser Engineering, 40, 1923-1927(2011).
[3] Weibiao Chen, Jun Zhou, Jiqiao Liu, et al. Doppler lidar and it’s all solid-state single frequency laser. Infrared and Laser Engineering, 37, 57-60(2008).
[4] Jinhong Xian, Dongsong Sun, Wenjing Xu, et al. Urban air pollution monitoring using scanning Lidar. Environmental Pollution, 258, 113696(2020).
[5] Jie Wang, Wenqing Liu, Cheng Liu, et al. The determination of aerosol distribution by a no-blind-zone scanning Lidar. Remote Sensing, 12, 626(2020).
[6] Zhishen Liu, Bingyi Liu, Songhua Wu, et al. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements. Optics Letters, 33, 1485-1487(2008).
[7] Haiyun Xia, Xiankang Dou, Dongsong Sun, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating systemlevel optical frequency control method. Optics Express, 20, 15286-15300(2016).
[8] Haiyun Xia, Xiankang Dou, Mingjia Shangguan, et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar. Optics Express, 22, 21775-21789(2014).
[9] Jiawei Qiu, Haiyun Xia, Xiankang Dou, et al. Optimization of scanning Fabry-Perot interferometer in the high spectral resolution lidar for stratospheric temperature detection. Optical Engineering, 55, 084107(2016).
[10] Chao Yu, Mingjia Shangguan, Haiyun Xia, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications. Optics Express, 25, 14611-14620(2017).
[11] Xiang Shang, Haiyun Xia, Xiankang Dou, et al. Adaptive inversion algorithm for 1.5 μm visibility lidar incorporating in situ Angstrom wavelength exponent. Optics Communications, 418, 129-134(2018).
[12] [12] The Optical Society, Lightbased method improves practicality quality of remote wind measurements258 [NOL]. OSA News Release, 20170906.
[13] Haiyun Xia, Dongsong Sun, Fahua Shen, et al. Direct detection Doppler wind lidar with twin-channel Fabry-Perot interferometer. Infrared and Laser Engineering, 35, 273-278(2006).
[14] Mingjia Shanguan, Chong Wang, Haiyun Xia, et al. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique. Optics Communications, 398, 95-100(2017).
[15] Haiyun Xia, Guoliang Shentu, Mingjia Shangguan, et al. Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector. Optics Letters, 40, 1579-1582(2015).
[16] Haiyun Xia, Mingjia Shangguan, Xiankang Dou, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer. Optics Letters, 41, 5218-5221(2016).
[17] Haiyun Xia, Dongsong Sun, Jingjing Dong, et al. Illumination effects on the dual Fabry-Perot etalon based Doppler wind lidar. Infrared and Laser Engineering, 36, 377-381(2007).
[18] Mingjia Shangguan, Haiyun Xia, Chong Wang, et al. et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector. Optics Letters, 42, 3541-3544(2017).
[19] Jiawei Qiu, Haiyun Xia, Xiankang Dou, et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single photon detector. Optics Letters, 42, 4454-4457(2017).
[20] Chao Yu, Jiawei Qiu, Haiyun Xia, et al. Compact 1.5 μm cloud lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector. Review of Scientific Instruments, 89, 103106(2018).
[21] Zhen Zhang, Haiyun Xia, Saifen Yu, et al. Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection. Applied Physics Letters, 116, 171106(2020).
[22] C Abari, Xinzhao Chu, Michael Hardesty, et al. A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations. Applied Optics, 54, 8999-9009(2015).
[23] Chong Wang, Haiyun Xia, Mingjia Shangguan, et al. 1.5 µm polarization coherent lidar incorporating time-division multiplexing. Optics Express, 25, 20663-20674(2017).
[24] Chong Wang, Haiyun Xia, Yanping Liu, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis. Optics Communications, 424, 48-53(2018).
[25] Chong Wang, Haiyun Xia, Yunbin Wu, et al. Meter-scale spatial resolution coherent Doppler wind lidar based on golay coding. Optics Letters, 44, 311-314(2019).
[26] Chong Wang, Mingjiao Jia, Haiyun Xia, et al. Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmospheric Measurement Techniques, 12, 3303-3315(2019).
[27] Tianwen Wei, Haiyun Xia, Yunbin Wu, et al. Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting. Optics Express, 28, 29662-29675(2020).
[28] Tianwen Wei, Haiyun Xia, Jianjun Hu, et al. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Optics Express, 27, 31235-31245(2019).
[29] Jinlong Yuan, Haiyu Xia, Tianwen Wei, et al. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of power spectrum of coherent Doppler wind lidar. Optics Express, 28, 37406-37418(2020).
Get Citation
Copy Citation Text
Jiawei Qiu, Zhen Zhang, Saifen Yu, Tianwen Wei, Jinlong Yuan, Haiyun Xia. Development of 1.5 μm lidar for atmospheric detection(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210079
Category: Special issue—Lidar
Received: Feb. 1, 2021
Accepted: --
Published Online: Jul. 15, 2021
The Author Email: