Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 8, 842(2024)
Application of equivalent dielectric model for investigating terahertz wired transmission materials
[1] [1] AKYILDIZ I F,HAN Chong,HU Zhifeng,et al. Terahertz band communication:an old problem revisited and research directions for the next decade[J]. IEEE Transactions on Communications, 2022,70(6):4250-4285. doi:10.1109/TCOMM.2022.3171800.
[2] [2] HE Menghui,CHEN Zhangxiong,ZENG Jiafu,et al. Design,fabrication,and characterization of a single-polarization single-mode flexible hollow waveguide for low loss millimeter wave propagation[J]. Optics Express, 2022, 30(6): 10178-10186. doi: 10.1364/OE.453515.
[3] [3] HE Menghui, ZENG Jiafu, CHEN Zhangxiong, et al. Low-loss flexible polarization-maintaining hollow waveguide for linearly polarized 100 GHz radiation transmission and subwavelength imaging[J]. Journal of Lightwave Technology, 2022,40(20):6712-6718. doi:10.1109/JLT.2022.3189668.
[4] [4] NALLAPPAN K,CAO Yang,XU Guofu,et al. Dispersion-limited versus power-limited terahertz communication links using solid core subwavelength dielectric fibers[J]. Photonics Research, 2020,8(11):1757-1775. doi:10.1364/prj.396433.
[5] [5] WEIDENBACH M,JAHN D,REHN A,et al. 3D printed dielectric rectangular waveguides,splitters and couplers for 120 GHz[J].Optics Express, 2016,24(25):28968-28976. doi:10.1364/OE.24.028968.
[6] [6] LU Dunke, WAN Minggui, LI Zhiwei, et al. Photonic bandgap terahertz fibers based on honeycombed tubes[J]. Optics Express,2021,29(26):43516-43530. doi:10.1364/OE.433608.
[7] [7] PHANCHAT N, TALATAISONG W, KLOKKOU N, et al. Extruded TOPAS hollow-core anti-resonant fiber optimized for THz guidance at 0.9 THz[J]. Optics Express, 2022,30(8):13059-13069. doi:10.1364/OE.450550.
[8] [8] SULTANA J,ISLAM M S,CORDEIRO C M B,et al. Hollow core inhibited coupled antiresonant terahertz fiber: a numerical and experimental study[J]. IEEE Transactions on Terahertz Science and Technology, 2021,11(3):245-260. doi:10.1109/TTHZ.2020.3031727.
[9] [9] TALATAISONG W,GORECKI J,PUTTEN L D V,et al. Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle[J]. Photonics Research, 2021,9(8):1513-1521. doi:10.1364/PRJ.420672.
[10] [10] NISHIMURA I, FUJITOMI S, YAMASHITA Y, et al. Development of new dielectric material to reduce transmission loss[C]//2020 IEEE the 70th Electronic Components and Technology Conference(ECTC). Orlando, FL, USA: IEEE, 2020: 641-646. doi:10.1109/ECTC32862.2020.00106.
[11] [11] SIBI N, INDUJA I J, SURENDRAN K P, et al. Natural garnet reinforced high density polyethylene composites for sustainable microwave substrates[J]. Materials Research Bulletin, 2018(106):478-484. doi:10.1016/j.materresbull.2018.06.002.
[12] [12] TAMURA Y,SAKUMA H,MORITA K,et al. The first 0.14 dB/km loss optical fiber and its impact on submarine transmission[J].Journal of Lightwave Technology, 2018,36(1):44-49. doi:10.1109/JLT.2018.2796647.
[13] [13] TAKAHASHI S, IMAI Y, KAN A, et al. High-frequency dielectric and mechanical properties of cyclo-olefin polymer/MgO composites[J]. Polymer Bulletin, 2015,72(7):1595-1601. doi:10.1007/s00289-015-1358-8.
[14] [14] TAKAHASHI S, IMAI Y, KAN A, et al. Effects of hollow Zn2SiO4 particles addition on dielectric properties of isotactic polypropylene-HW composites[J]. Materials Science and Engineering:B, 2016(209):51-55. doi:10.1016/j.mseb. 2016.01.010.
[15] [15] DUANGRIT N, HONG B B, BURNETT A D, et al. Terahertz dielectric property characterization of photopolymers for additive manufacturing[J]. IEEE Access, 2019(7):12339-12347. doi:10.1109/ACCESS.2019.2893196.
[16] [16] WANG Yi, SHANG Xiaobang, RIDLER N M, et al. Material measurements using VNA-based material characterization kits subject to thru-reflect-line calibration[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 466-473. doi:10.1109/TTHZ.2020.2999631.
[17] [17] TAKAHASHI S,IMAI Y,KAN A,et al. Preparation and characterization of isotactic polypropylene/MgO composites as dielectric materials with low dielectric loss[J]. Journal of the Ceramic Society of Japan, 2013, 121(1416): 606-610. doi: 10.2109/jcersj2.121.606.
[18] [18] ZHENG Liu,ZHOU Jing,SHEN Jie,et al. The dielectric properties and dielectric mechanism of perovskite ceramic CLST/PTFE composites[J]. Journal of Materials Science—Materials in Electronics, 2017, 28(16): 11665-11670. doi:/10.1007/s10854-017-6969-4.
[19] [19] XIE Zilong, LIU Dingyao, WU Kai, et al. Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion[J]. Polymer, 2021(214):123348. doi:10.1016/j.polymer.2020.123348.
[20] [20] PENG Haiyi, REN Haishen, DANG Mingzhao, et al. Novel high dielectric constant and low loss PTFE/CNT composites[J].Ceramics International, 2018,44(14):16556-16560. doi:10.1016/j.ceramint.2018.06.077.
[21] [21] PRATEEK, THAKUR V K, GUPTA R K, et al. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects[J]. Chemical Reviews, 2016, 116(7): 4260-4317. doi: 10.1021/acs.chemrev.5b00495.
[22] [22] WANG Lu, YANG Jing, CHENG Wenhua, et al. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission[J]. Frontiers in Materials, 2021(8):774843. doi:/10.3389/fmats.2021.774843.
[23] [23] TAKAHASHI S, IMAI Y, KAN A, et al. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications[J]. Journal of Alloys and Compounds, 2014(615): 141-145. doi: 10.1016/j. jallcom.2014.06.138.
[24] [24] SHEMATILO T N,GERING M O,KULESHOV G E,et al. Dielectric properties of 3D-printing Ba containing ABS composites at THz frequency range[C]// 2020 the 45th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz).Buffalo,NY,USA:IEEE, 2020:1-2. doi:10.1109/IRMMW-THz46771.2020.9370484.
[25] [25] MOSKALENKO V D, SHEMATILO T N, DOROZHKIN K V, et al. Sub-THz absorbers based on BaTiO3/epoxy composites[J].Journal of Physics:Conference Series, 2021,1989(1):012034. doi:10.1088/1742-6596/1989/1/012034.
[26] [26] LEIST J, NAFTALY M, DUDLEY R. Investigation of hexagonal boron nitride by terahertz time-domain spectroscopy[C]//Imaging and Applied Optics Congress. Tucson,Arizona,USA:Optica Publishing Group, 2010. doi:10.1364/AIO.2010.ATuC3.
Get Citation
Copy Citation Text
GAO Chengzhe, LENG Jin, HUANG Gang, SHI Qiwu. Application of equivalent dielectric model for investigating terahertz wired transmission materials[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(8): 842
Received: Oct. 10, 2023
Accepted: --
Published Online: Sep. 23, 2024
The Author Email: Qiwu SHI (shiqiwu@scu.edu.cn)