Journal of Inorganic Materials, Volume. 35, Issue 9, 972(2020)
[6] S JOUANNEAU, D MACNEIL D, Z LU. Morphology and safety of Li[Ni
[8] J KIM, H LEE, H CHA. Nickel-rich cathodes: prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater, 8, 1702028(2018).
[9] H XIONG X, X WANG Z, P YUE. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources, 222, 318-325(2013).
[10] S XU, X WANG, W ZHANG. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials. J. Solid State Ionics, 334, 105-110(2019).
[13] T MYUNG S, K IZUMI, S KOMABA. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater, 17, 3695-3704(2005).
[14] J YU H, M QIAN Y, M OTANI. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ. Sci, 7, 1068-1078(2014).
[15] D AURBACH. Electrode-solution interactions in Li-ion batteries: a short summary and new insights. J. Power Sources, 497-503(2003).
[16] T MYUNG S, K AMINE, K SUN Y. Surface modification of cathode materials from nano- to microscale for rechargeable lithium- ion batteries. J. Mater. Chem, 20, 7074-7095(2010).
[17] S YOON W, J HANSON, J MCBREEN. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD. Electrochem.Commun, 8, 859-862(2006).
[20] K JUNG S, H GWON, J HONG. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater, 4, 1300787(2014).
[22] A MANTHIRAM, C KNIGHT J, T MYUNG S. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater, 6, 1501010(2016).
[23] Z CHEN, D CHAO, J LIN. Recent progress in surface coating of layered LiNi
[26] D AURBACH.
[28] J LI, H LIU, J XIA. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes. J. Electrochem. Soc, 164, A655-A665(2017).
[31] J VETTER, P NOVAK, R WAGNER M. Ageing mechanisms in lithium-ion batteries. J. Power Sources, 147, 269-281(2005).
[32] D AURBACH, B MARKOVSKY, G SALITRA. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources, 165, 491-499(2007).
[33] W LIANG L, R HU G, F JIANG. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J. Alloys Compd, 657, 570-581(2016).
[35] P LI Y, J YAN G, M LUO L. Enhanced electrochemical performance of LiNi0.4Co0.2Mn0.4O2 cathode materials
[36] M LOGHAVI M, H MOHAMMADI-MANESH, R EQRA. LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem, 23, 2569-2578(2019).
[38] X ZUO D, P WANG C, L TIAN G. Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology. J. Electrochem. Sci. Eng, 9, 85-97(2019).
[39] C ZHU W, X HUANG, T LIU T. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges. Coatings, 9, 92(2019).
[41] L CUI X, L AI, P MAO L. Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer. Ionics, 25, 411-419(2019).
[43] H LEE S, S YOON C, K AMINE. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J. Power Sources, 234, 201-207(2013).
[45] L HAN B, C LU X. Effect of nano-sized CeF3 on microstructure, mechanical, high temperature friction and corrosion behavior of Ni-W composite coatings. Surf. Coat. Technol, 203, 3656-3660(2009).
[46] A KUMAR D, S SELVASEKARAPANDIAN, H NITHYA. Structural and conductivity analysis on cerium fluoride nanoparticles prepared by sonication assisted method. Solid State Sci, 14, 626-634(2012).
[47] A KUMAR D, S SELVASEKARAPANDIAN, H NITHYA. Influence of substrate temperature on CeF3 thin films prepared by thermal evaporation. Mater. Chem. Phys, 143, 765-772(2014).
[49] G SONG H, B KIM S, J PARK Y. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2. J. Electroceram, 29, 163-169(2012).
[50] C DAI S, J YAN G, L WANG. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material
[53] H JO C, H CHO D, J NOH H. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res, 8, 1464-1479(2015).
[54] J ZHU, J LI Y, L XUE L. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material
[55] L FAN Q, D YANG S, J LIU. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J. Power Sources, 421, 91-99(2019).
[56] Q BAN L, P YIN Y, D ZHUANG W. Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation. Electrochim. Acta, 180, 218-226(2015).
[58] S XU, Y DU C, X XU. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta, 248, 534-540(2017).
[59] S HE X, K HAN G, F LOU S. Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material by coating of graphene nanodots. J. Electrochem. Soc, 166, A1038-A1044(2019).
[66] S ZHANG S, L FAN X, S WANG C. Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive. ChemElectroChem, 6, 1536-1541(2019).
[67] J LI, E DOWNIE L, L MA. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. J. Electrochem. Soc, 162, A1401-A1408(2015).
[70] J PENG Z, W YANG G, Q LI F. Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5
[71] W LEE S, S KIM M, H JEONG J. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance. J. Power Sources, 360, 206-214(2017).
[72] B KIM S, J LEE K, J CHOI W. Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Solid State Electrochem, 14, 919-922(2010).
[74] L ZHU, F YAN T, D JIA. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells. J. Electrochem. Soc, 166, A5437-A5444(2019).
[75] S KIM W, B KIM S, C JANG I. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Alloys Compd, 492, L87-L90(2010).
[76] J DIAO R, P NAYAKA G, Y ZHU C. CePO4 coated LiNi0.6Co0.2Mn0.2O2 as cathode material and its electrochemical performance. Int. J. Electrochem. Sci, 14, 8070-8079(2019).
[78] M LIU W, R HU G, K DU. Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method. Surf. Coat. Tech, 216, 267-272(2013).
[80] M LIU W, R HU G, K DU. Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2. J. Power Sources, 230, 201-206(2013).
[84] S HASHIGAMI, K YOSHIMI, Y KATO. Improvement of cycleability and rate-capability of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with lithium boron oxide by an antisolvent precipitation method. ChemistrySelect, 4, 8676-8681(2019).
[85] Y ZHANG J, Y CAO, X OU. Constituting the NASICON type solid electrolyte coated material forming anti-high voltage system to enhance the high cut-off voltage performance of LiNi0.6Co0.2Mn0.2O2
[87] S HE X, X XU, G WANG L. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material
[90] D BHUVANESWARI, G BABU, N KALAISELVI. Effect of surface modifiers in improving the electrochemical behavior of LiNi0.4Mn0.4Co0.2O2 cathode. Electrochim. Acta, 109, 684-693(2013).
[91] D WANG, H LI X, X WANG Z. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta, 188, 48-56(2016).
[92] C POUILLERIE, L CROGUENNEC, P BIENSAN. Synthesis and characterization of new LiNi1-
[93] Q XIE, D LI W, A MANTHIRAM. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater, 31, 938-946(2019).
[97] U WOO S, C PARK B, S YOON C. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution. J. Electrochem. Soc, 154, A649-A655(2007).
[98] L LI C, H KAN W, L XIE H. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability. Adv. Sci, 6, 1801406(2019).
[99] X LI, W XIE Z, J LIU W. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta, 174, 1122-1130(2015).
[101] G YANG Z, W XIANG, G WU Z. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram. Int, 43, 3866-3872(2017).
[102] F WU J, G LIU H, H YE X. Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J. Alloys Compd, 644, 223-227(2015).
[103] J BREGER, S MENG Y, Y HINUMA. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater, 18, 4768-4781(2006).
[104] F SCHIPPER, M DIXIT, D KOVACHEVA. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A, 4, 16073-16084(2016).
[107] R DU, Y BI, W YANG. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2
[108] H PARK S, W OH S, SUN, K Y. Synthesis and structural characterization of layered Li[Ni1/3+
[109] J YANG, Y XIA Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces, 8, 1297-1308(2016).
[113] H XIAO P, Q DENG Z, A MANTHIRAM. Calculations of oxygen stability in lithium-rich layered cathodes. J. Phys. Chem. C, 116, 23201-23204(2012).
[114] D AURBACH, O SRUR-LAVI, C GHANTY. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. J. Electrochem. Soc, 162, A1014-A1027(2015).
[115] H KIM U, W JUN D, J PARK K. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci, 11, 1271-1279(2018).
[119] W XIANG, Q ZHU C, J ZHANG. Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. J. Alloys Compd, 786, 56-64(2019).
[120] G HU, M ZHANG, L LIANG. Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim. Acta, 190, 264-275(2016).
[121] H CHANG S, X CHEN Y, J LI Y. Improvement of the high-voltage electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2@ZrO2 cathode materials with liquid phase modification. J. Alloys Compd, 781, 496-503(2019).
[122] X LI, J ZHANG K, S WANG M. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain. Energ. Fuels, 2, 413-421(2018).
Get Citation
Copy Citation Text
Xiangtao BAI, Liqing BAN, Weidong ZHUANG.
Category: REVIEW
Received: Nov. 7, 2019
Accepted: --
Published Online: Mar. 3, 2021
The Author Email: