Journal of Inorganic Materials, Volume. 35, Issue 9, 972(2020)

Research Progress on Coating and Doping Modification of Nickel Rich Ternary Cathode Materials

Xiangtao BAI1, Liqing BAN2, and Weidong ZHUANG2
Author Affiliations
  • 1China Automotive Battery Research Institute Co., Ltd, Beijing 101407, China
  • 2General Research Institute for Nonferrous Metals, Beijing 100088, China
  • show less
    References(138)

    [6] S JOUANNEAU, D MACNEIL D, Z LU. Morphology and safety of Li[NixCo1-2xMnx ]O2 (0≤x≤1/2). J. Electrochem. Soc, 150, A1299-1304(2003).

    [8] J KIM, H LEE, H CHA. Nickel-rich cathodes: prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater, 8, 1702028(2018).

    [9] H XIONG X, X WANG Z, P YUE. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources, 222, 318-325(2013).

    [10] S XU, X WANG, W ZHANG. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials. J. Solid State Ionics, 334, 105-110(2019).

    [13] T MYUNG S, K IZUMI, S KOMABA. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater, 17, 3695-3704(2005).

    [14] J YU H, M QIAN Y, M OTANI. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ. Sci, 7, 1068-1078(2014).

    [15] D AURBACH. Electrode-solution interactions in Li-ion batteries: a short summary and new insights. J. Power Sources, 497-503(2003).

    [16] T MYUNG S, K AMINE, K SUN Y. Surface modification of cathode materials from nano- to microscale for rechargeable lithium- ion batteries. J. Mater. Chem, 20, 7074-7095(2010).

    [17] S YOON W, J HANSON, J MCBREEN. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD. Electrochem.Commun, 8, 859-862(2006).

    [20] K JUNG S, H GWON, J HONG. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater, 4, 1300787(2014).

    [22] A MANTHIRAM, C KNIGHT J, T MYUNG S. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater, 6, 1501010(2016).

    [23] Z CHEN, D CHAO, J LIN. Recent progress in surface coating of layered LiNixCoyMnzO2 for lithium-ion batteries. Mater. Res. Bull, 96, 491-502(2017).

    [26] D AURBACH. γ-butyrolactone solutions II. contaminated solutions. J. Electrochem. Soc, 136, 1611-1614(1989).

    [28] J LI, H LIU, J XIA. The impact of electrolyte additives and upper cut-off voltage on the formation of a rocksalt surface layer in LiNi0.8Mn0.1Co0.1O2 electrodes. J. Electrochem. Soc, 164, A655-A665(2017).

    [31] J VETTER, P NOVAK, R WAGNER M. Ageing mechanisms in lithium-ion batteries. J. Power Sources, 147, 269-281(2005).

    [32] D AURBACH, B MARKOVSKY, G SALITRA. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J. Power Sources, 165, 491-499(2007).

    [33] W LIANG L, R HU G, F JIANG. Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J. Alloys Compd, 657, 570-581(2016).

    [35] P LI Y, J YAN G, M LUO L. Enhanced electrochemical performance of LiNi0.4Co0.2Mn0.4O2 cathode materials via Y2O3 coating. Mater. Res. Express, 6, 105533(2019).

    [36] M LOGHAVI M, H MOHAMMADI-MANESH, R EQRA. LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem, 23, 2569-2578(2019).

    [38] X ZUO D, P WANG C, L TIAN G. Comparative study of Al2O3, SiO2 and TiO2-coated LiNi0.6Co0.2Mn0.2O2 electrode prepared by hydrolysis coating technology. J. Electrochem. Sci. Eng, 9, 85-97(2019).

    [39] C ZHU W, X HUANG, T LIU T. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges. Coatings, 9, 92(2019).

    [41] L CUI X, L AI, P MAO L. Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer. Ionics, 25, 411-419(2019).

    [43] H LEE S, S YOON C, K AMINE. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J. Power Sources, 234, 201-207(2013).

    [45] L HAN B, C LU X. Effect of nano-sized CeF3 on microstructure, mechanical, high temperature friction and corrosion behavior of Ni-W composite coatings. Surf. Coat. Technol, 203, 3656-3660(2009).

    [46] A KUMAR D, S SELVASEKARAPANDIAN, H NITHYA. Structural and conductivity analysis on cerium fluoride nanoparticles prepared by sonication assisted method. Solid State Sci, 14, 626-634(2012).

    [47] A KUMAR D, S SELVASEKARAPANDIAN, H NITHYA. Influence of substrate temperature on CeF3 thin films prepared by thermal evaporation. Mater. Chem. Phys, 143, 765-772(2014).

    [49] G SONG H, B KIM S, J PARK Y. Enhanced electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2 cathode by surface coating using LaF3 and MgF2. J. Electroceram, 29, 163-169(2012).

    [50] C DAI S, J YAN G, L WANG. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. J. Electroanal. Chem, 847, 113197(2019).

    [53] H JO C, H CHO D, J NOH H. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res, 8, 1464-1479(2015).

    [54] J ZHU, J LI Y, L XUE L. Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating. J. Alloys Compd, 773, 112-120(2019).

    [55] L FAN Q, D YANG S, J LIU. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J. Power Sources, 421, 91-99(2019).

    [56] Q BAN L, P YIN Y, D ZHUANG W. Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation. Electrochim. Acta, 180, 218-226(2015).

    [58] S XU, Y DU C, X XU. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim. Acta, 248, 534-540(2017).

    [59] S HE X, K HAN G, F LOU S. Improved electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material by coating of graphene nanodots. J. Electrochem. Soc, 166, A1038-A1044(2019).

    [66] S ZHANG S, L FAN X, S WANG C. Enhanced electrochemical performance of Ni-rich layered cathode materials by using LiPF6 as a cathode additive. ChemElectroChem, 6, 1536-1541(2019).

    [67] J LI, E DOWNIE L, L MA. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. J. Electrochem. Soc, 162, A1401-A1408(2015).

    [70] J PENG Z, W YANG G, Q LI F. Improving the cathode properties of Ni-rich LiNi0.6Co0.2Mn0.2O2 at high voltages under 5C by Li2SiO3 coating and Si4+ doping. J. Alloys Compd, 762, 827-834(2018).

    [71] W LEE S, S KIM M, H JEONG J. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance. J. Power Sources, 360, 206-214(2017).

    [72] B KIM S, J LEE K, J CHOI W. Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Solid State Electrochem, 14, 919-922(2010).

    [74] L ZHU, F YAN T, D JIA. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells. J. Electrochem. Soc, 166, A5437-A5444(2019).

    [75] S KIM W, B KIM S, C JANG I. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J. Alloys Compd, 492, L87-L90(2010).

    [76] J DIAO R, P NAYAKA G, Y ZHU C. CePO4 coated LiNi0.6Co0.2Mn0.2O2 as cathode material and its electrochemical performance. Int. J. Electrochem. Sci, 14, 8070-8079(2019).

    [78] M LIU W, R HU G, K DU. Surface coating of LiNi0.8Co0.15Al0.05O2 with LiCoO2 by a molten salt method. Surf. Coat. Tech, 216, 267-272(2013).

    [80] M LIU W, R HU G, K DU. Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2. J. Power Sources, 230, 201-206(2013).

    [84] S HASHIGAMI, K YOSHIMI, Y KATO. Improvement of cycleability and rate-capability of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with lithium boron oxide by an antisolvent precipitation method. ChemistrySelect, 4, 8676-8681(2019).

    [85] Y ZHANG J, Y CAO, X OU. Constituting the NASICON type solid electrolyte coated material forming anti-high voltage system to enhance the high cut-off voltage performance of LiNi0.6Co0.2Mn0.2O2via charge attracts electrostatic assembly. J. Power Sources, 436, 226722(2019).

    [87] S HE X, X XU, G WANG L. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material via Li2TiO3 nanoparticles coating. J. Electrochem. Soc, 166, A143-A150(2019).

    [90] D BHUVANESWARI, G BABU, N KALAISELVI. Effect of surface modifiers in improving the electrochemical behavior of LiNi0.4Mn0.4Co0.2O2 cathode. Electrochim. Acta, 109, 684-693(2013).

    [91] D WANG, H LI X, X WANG Z. Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim. Acta, 188, 48-56(2016).

    [92] C POUILLERIE, L CROGUENNEC, P BIENSAN. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries. J. Electrochem. Soc, 147, 2061-2069(2000).

    [93] Q XIE, D LI W, A MANTHIRAM. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater, 31, 938-946(2019).

    [97] U WOO S, C PARK B, S YOON C. Improvement of electrochemical performances of Li[Ni0.8Co0.1Mn0.1]O2 cathode materials by fluorine substitution. J. Electrochem. Soc, 154, A649-A655(2007).

    [98] L LI C, H KAN W, L XIE H. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability. Adv. Sci, 6, 1801406(2019).

    [99] X LI, W XIE Z, J LIU W. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim. Acta, 174, 1122-1130(2015).

    [101] G YANG Z, W XIANG, G WU Z. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram. Int, 43, 3866-3872(2017).

    [102] F WU J, G LIU H, H YE X. Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J. Alloys Compd, 644, 223-227(2015).

    [103] J BREGER, S MENG Y, Y HINUMA. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem. Mater, 18, 4768-4781(2006).

    [104] F SCHIPPER, M DIXIT, D KOVACHEVA. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A, 4, 16073-16084(2016).

    [107] R DU, Y BI, W YANG. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2via Ti substitution with a cut-off potential of 4.5 V. Ceram. Int, 41, 7133-7139(2015).

    [108] H PARK S, W OH S, SUN, K Y. Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J. Power Sources, 146, 622-625(2005).

    [109] J YANG, Y XIA Y. Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl. Mater. Interfaces, 8, 1297-1308(2016).

    [113] H XIAO P, Q DENG Z, A MANTHIRAM. Calculations of oxygen stability in lithium-rich layered cathodes. J. Phys. Chem. C, 116, 23201-23204(2012).

    [114] D AURBACH, O SRUR-LAVI, C GHANTY. Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. J. Electrochem. Soc, 162, A1014-A1027(2015).

    [115] H KIM U, W JUN D, J PARK K. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci, 11, 1271-1279(2018).

    [119] W XIANG, Q ZHU C, J ZHANG. Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. J. Alloys Compd, 786, 56-64(2019).

    [120] G HU, M ZHANG, L LIANG. Mg-Al-B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim. Acta, 190, 264-275(2016).

    [121] H CHANG S, X CHEN Y, J LI Y. Improvement of the high-voltage electrochemical properties of Li[Ni0.5Co0.2Mn0.3]O2@ZrO2 cathode materials with liquid phase modification. J. Alloys Compd, 781, 496-503(2019).

    [122] X LI, J ZHANG K, S WANG M. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2. Sustain. Energ. Fuels, 2, 413-421(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xiangtao BAI, Liqing BAN, Weidong ZHUANG. Research Progress on Coating and Doping Modification of Nickel Rich Ternary Cathode Materials[J]. Journal of Inorganic Materials, 2020, 35(9): 972

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Nov. 7, 2019

    Accepted: --

    Published Online: Mar. 3, 2021

    The Author Email:

    DOI:10.15541/jim20190568

    Topics