Journal of Innovative Optical Health Sciences, Volume. 7, Issue 3, 1450008(2014)
Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm
[1] [1] V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: The evolution of whole-body photonic imaging," Nat. Biotechnol. 23(3), 313–320 (2005).
[2] [2] J. Tian, Bai, X. Yan et al., "Multimodality molecular imaging: Improving image quality," IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008).
[3] [3] R. Weissleder, U. Mahmood, "Molecular imaging," Radiology 219(2), 316–333 (2001).
[4] [4] M. J. Niedre et al., "Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo," Proc. Natl. Acad. Sci. USA 105(49), 19126–19131 (2008).
[5] [5] J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, S. S. Gambhir, "Molecular imaging in drug development," Nat. Rev. Drug Discov. 7(7), 591–607, (2008).
[6] [6] S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41–R93 (1999).
[7] [7] Y. Tan, H. Jiang, "DOT guided fluorescence molecular tomography of arbitrarily shaped objects," Med. Phys. 35, 5703–5707 (2008).
[8] [8] X. Wang, C. Xu, J. Bai et al., "A hybrid reconstruction algorithm for fluorescence tomography using Kirchhoff approximation and finite element method," Med. Biol. Eng. 51, 7–17 (2013).
[9] [9] J.-C. Baritaux, K. Hassler, M. Unser, "An efficient numerical method for general Lp regularization in fluorescence molecular tomography," IEEE Trans. Med. Imaging 29(4) (2010).
[10] [10] Y. Lin, H. Yan, O. Nalcioglu, G. Gulsen, "Quantitative fluorescence tomography with functional and structural a priori information," Appl. Opt. 48, 1328–1336 (2009).
[11] [11] S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian- type regularization," Opt. Express 15, 4066– 4082 (2007).
[12] [12] D. Hyde, E. L. Miller, D. H. Brooks, V. Ntziachristos, "Data specific spatially varying regularization for multi-modal fluorescence molecular tomography," IEEE Trans. Med. Imaging. 29, 365– 374 (2010).
[13] [13] M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, J. Bai, "Reconstruction of fluorescence molecular tomography using a neighborhood regularization," IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012).
[14] [14] J. Dutta, S. Ahn, C. Li, S. R. Cherry, R. M. Leahy, "JointL1 and total variation regularization for fluorescence molecular tomography," Phys. Med. Biol, 57, 1459–1476 (2012).
[15] [15] P. Mohajerani, A. A. Eftekhar, J. Huang, A. Adibi, "Optimal sparse solution for fluorescent diffuse optical tomography: Theory and phantom experimental results," Appl. Opt. 46, 1679–1685 (2007).
[16] [16] D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, X. Yang, "A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization," Opt. Express. 18, 8630–8646 (2010).
[17] [17] D. Wang, X. Song, J. Bai, "Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution," Opt. Express 15(15), 9722–9730 (2007).
[18] [18] H. Gao, H. Zhao, "Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: Total variation and L1 data fidelity," Opt. Express 18(3), 2894–2912 (2010).
[19] [19] H. Yi, D. Chen, X. Qu, K. Peng, X. Chen, Y. Zhou, J. Tian, L. Jimin, "Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography," Appl. Opt. 51(7), 975–986 (2012).
[20] [20] X. He, J. Liang, X. Wang et al., "Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method," Opt. Express 18(24), 24825–24841 (2010).
[21] [21] D. Han, X. Yang, K. Liu, B. Zhang, X. Ma, J. Tian, "Efficient reconstruction method for L1 regularization in fluorescence molecular tomography," Appl. Opt. 49(36), 6930–6937 (2010).
[22] [22] H. Yi, D. Chen, W. Li, S. Zhou, M. Ning, S. Zhu, J. Tian, J. Liang, "Normalized born approximationbased two-stage reconstruction algorithm for quantitative fluorescence molecular tomography," J. Electrical Comput. Eng. 2012, 838967 (2012).
[23] [23] M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, "The finite element method for the propagation of light in scattering media: Boundary and source conditions," Med. Phys. 22, 1779–1792 (1995).
[24] [24] D. Wang, X. Liu, Y. Chen, J. Bai, "A novel finiteelement based algorithm for fluorescence molecular tomography of heterogeneous media," IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009).
[25] [25] W. Cong, G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847–9857 (2005).
[26] [26] R. Tibshirani, "Regression shrinkage and selection via the LASSO," J. R. Stat. Soc. 58, 267–288 (1996).
[27] [27] S. S. Chen, D. L. Donoho, M. A. Saunders, "Atomic decomposition by basis pursuit," J. Sci. Comput. 20(1), 33–61 (1998).
[28] [28] J. Yu, F. Liu, J. Wu, L. Jiao, X. He, "Fast source reconstruction for bioluminescence tomography based on sparse regularization," IEEE Trans. Biomed. Eng. 57(10), 2583–2586 (2010).
[29] [29] J. A. K. Suykens, L. Lukas, J. Vandewalle, "Sparse approximation using least squares support vector machines," Circuits Sys. 2, 757–760 (2000).
[30] [30] L. Jiao, L. Bo, L. Wang, "Fast sparse approximation for least square support vector machine," IEEE Trans. Neural Netw. 18(3), 685–697 (2007).
[31] [31] B. Dogdas, D. Stout, A. F. Chatziioannou, R. M. Leahy, "Digimouse: A 3D whole body mouse atlas from CT and cryosection data," Phys. Med. Biol. 52, 577–587 (2007).
Get Citation
Copy Citation Text
Jingjing Yu, Jingxing Cheng, Yuqing Hou, Xiaowei He. Sparse reconstruction for fluorescence molecular tomography via a fast iterative algorithm[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450008
Received: Aug. 7, 2013
Accepted: Nov. 3, 2013
Published Online: Jan. 10, 2019
The Author Email: Yu Jingjing (yujj@snnu.edu.cn)