Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 185(2022)

Single Particle Analysis Method for Battery Materials

XU Wei... ZOU Guoqiang, HOU Hongshuai and JI Xiaobo* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(64)

    [1] [1] LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries[J]. Adv Mate., 2018, 30(33): 1800561.

    [2] [2] LI W, SONG B, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chem Soc. Rev, 2017, 46(10):3006–3059.

    [4] [4] WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chem Rev, 2014, 114(23): 11414–11443.

    [5] [5] YANG Z, ZHANG J, KINTNER-MEYER M C, et al. Electrochemical energy storage for green grid[J]. Chem Rev, 2011, 111(5): 3577–3613.

    [6] [6] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015,7(1): 19–29.

    [8] [8] ANDRE D, KIM S-J, LAMP P, et al. Future generations of cathode materials: An automotive industry perspective[J]. J Mater Chem A,2015, 3(13): 6709–6732.

    [9] [9] KIM U-H, KIM J-H, HWANG J-Y, et al. Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries[J]. Mater Today, 2019, 23: 26–36.

    [10] [10] SUN F, HE X, JIANG X, et al. Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography[J].Mater Today, 2019, 27: 21–32.

    [11] [11] KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. J Mater Chem A,2019, 7(7): 2942–2964.

    [12] [12] ANDERSON T J, ZHANG B. Single-nanoparticle electrochemistry through immobilization and collision[J]. Acc Chem Res, 2016, 49(11):2625–2631.

    [13] [13] RETTENWANDER D, REDHAMMER G J, GUIN M, et al. Arrhenius behavior of the bulk Na-ion conductivity in Na3Sc2(PO4)3 single crystals observed by microcontact impedance spectroscopy[J]. Chem Mater, 2018, 30(5): 1776–1781.

    [14] [14] BARD A J, ZHOU H, KWON S J. Electrochemistry of single nanoparticles via electrocatalytic amplification[J]. Isr J Chem, 2010,50(3): 267–276.

    [15] [15] CHENG W, COMPTON R G. Electrochemical detection of nanoparticles by ‘nano-impact’ methods[J]. Trends Anal Chem, 2014, 58: 79–89.

    [16] [16] XU W, TIAN Y, ZOU G, et al. Single particles electrochemistry for batteries[J]. J Electroanal Chem, 2020, 872: 113935.

    [17] [17] XU W, ZOU G, HOU H, et al. Single Particle electrochemistry of collision[J]. Small, 2019, 15(32): 1804908.

    [18] [18] PALACIOS R E, FAN F-R F, GREY J K, et al. Charging and discharging of single conjugated-polymer nanoparticles[J]. Nat Mater,2007, 6(9): 680–685.

    [19] [19] CHENG W, ZHOU X F, COMPTON R G. Electrochemical sizing of organic nanoparticles[J]. Angew Chem Int Ed Engl, 2013, 52(49):12980–12982.

    [20] [20] K?TELH?N E, FENG A, CHENG W, et al. Understanding nano-impact current spikes: electrochemical doping of impacting nanoparticles[J]. J Phys Chem C, 2016, 120(30): 17029–17034.

    [21] [21] SOKOLOV S V, ELOUL S, KATELHON E, et al. Electrode-particle impacts: A users guide[J]. Phys Chem Chem Phys, 2016, 19(1): 28–43.

    [22] [22] XU W, ZHOU Y, JI X. Lithium-ion-transfer kinetics of single LiFePO4 particles[J]. J Phys Chem Lett, 2018, 9(17): 4976–4980.

    [23] [23] XU W, ZHOU Y, CHEN J, et al. Single LiNi0.8Mn0.1Co0.1O2 particle electrochemistry of collision[J]. J Power Sources, 2021, 506: 230228.

    [24] [24] ZAMPARDI G, BATCHELOR-MCAULEY C, KATELHON E, et al. Lithium-ion-transfer kinetics of single LiMn2O4 particles[J]. Angew Chem Int Ed Engl, 2017, 56(2): 641–644.

    [25] [25] ZAMPARDI G, SOKOLOV S V, BATCHELOR-MCAULEY C, et al.Potassium (De-)insertion processes in prussian blue particles: ensemble versus single nanoparticle behaviour[J]. Chem Eur J, 2017, 23(57):14338–14344.

    [26] [26] L?FFLER T, CLAUSMEYER J, WILDE P, et al. Single entity electrochemistry for the elucidation of lithiation kinetics of TiO2 particles in non-aqueous batteries[J]. Nano Energy, 2019, 57: 827–834.

    [27] [27] BRASILIENSE V, CLAUSMEYER J, DAUPHIN A L, et al. Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles[J]. Angew Chem Int Ed, 2017, 56(35):10598–10601.

    [28] [28] DOKKO K, NAKATA N, KANAMURA K. High rate discharge capability of single particle electrode of LiCoO2[J]. J Power Sources,2009, 189(1): 783–785.

    [29] [29] HU J, LI W, DUAN Y, et al. Single-particle performances and properties of LiFePO4 nanocrystals for Li-ion batteries[J]. Adv Energy Mater, 2017, 7(5): 1601894.

    [30] [30] KANAMURA K, YAMADA Y, ANNAKA K, et al. Electrochemical evaluation of active materials for lithium ion batteries by one (single) particle measurement[J]. Electrochemistry, 2016, 84(10): 759–765.

    [31] [31] MUNAKATA H, TAKEMURA B, SAITO T, et al. Evaluation of real performance of LiFePO4 by using single particle technique[J]. J Power Sources, 2012, 217: 444–448.

    [32] [32] UMEDA M, DOKKO K, FUJITA Y, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon[J]. Electrochim Acta, 2001, 47(6):885–890.

    [33] [33] JEBARAJ A J J, SCHERSON D A. Microparticle electrodes and single particle microbatteries: electrochemical and in situ microRaman spectroscopic studies[J]. Acc Chem Res, 2013, 46(5): 1192–1205.

    [34] [34] ANDO K, YAMADA Y, NISHIKAWA K, et al. Degradation analysis of LiNi0.8Co0.15Al0.05O2 for cathode material of lithium-ion battery using single-particle measurement[J]. ACS Appl Energy Mater, 2018,1(9): 4536–4544.

    [35] [35] TOJO T, KAWASHIRI S, TSUDA T, et al. Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode[J]. J Electro Chem, 2019, 836: 24–29.

    [36] [36] TSAI P-C, WEN B, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy Environ Sci, 2018, 11(4): 860–871.

    [37] [37] LU W, ZHOU X, LIU Y, et al. Crack-free silicon monoxide as anodes for lithium-ion batteries[J]. ACS Appl Mater Interf, 2020, 12(51):57141–57145.

    [38] [38] ZHOU X, LI T, CUI Y, et al. In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries[J]. ACS Appl Mater Interf, 2019,11(2): 1733–1738.

    [39] [39] SAITO T, NISHIKAWA K, NAKAMURA T, et al. Precise analysis of resistance components and estimation of number of particles in Li-ion battery electrode sheets using LiCoO2 single-particle electrochemical properties[J]. J Phys Chem C, 2020, 124(31): 16758–16762.

    [40] [40] GENG L, DENECKE M E, FOLEY S B, et al. Electrochemical characterization of lithium cobalt oxide within aqueous flow suspensions as an indicator of rate capability in lithium-ion battery electrodes[J]. Electrochim Acta, 2018, 281: 822–830.

    [41] [41] QI Z, KOENIG G M. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries[J]. J Power Sources,2016, 323: 97–106.

    [42] [42] QI Z, KOENIG G M. Electrochemical evaluation of suspensions of lithium-ion battery active materials as an indicator of rate capability[J].J Electrochem Soc, 2017, 164(2): A151–A155.

    [43] [43] QI Z, DONG H, KOENIG G M. Electrochemical characterization of lithium-ion battery cathode materials with aqueous flowing dispersions[J]. Electrochim Acta, 2017, 253: 163–170.

    [44] [44] AKADA K, SUDAYAMA T, ASAKURA D, et al. Operando measurement of single crystalline Li4Ti5O12 with octahedral-like morphology by microscopic X-ray photoelectron spectroscopy[J]. J Electro Spectrosc Relat Phenom, 2019, 233: 64–68.

    [45] [45] BOESENBERG U, MEIRER F, LIU Y, et al. Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation[J]. Chem Mater, 2013, 25(9): 1664–1672.

    [46] [46] KAN W H, DENG B, XU Y, et al. Understanding the effect of local short-range ordering on lithium diffusion in Li1.3Nb0.3Mn0.4O2 single-crystal cathode[J]. Chem, 2018, 4(9): 2108–2123.

    [47] [47] KUPPAN S, XU Y, LIU Y, et al. Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy[J]. Nat Commun, 2017, 8(1): 14309.

    [48] [48] LIU H, STROBRIDGE F C, BORKIEWICZ O J, et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes[J]. Science, 2014, 344(6191): 1252817.

    [49] [49] SONG J, PARK J, APPIAH W A, et al. 3D electrochemical model for a single secondary particle and its application for operando analysis[J].Nano Energy, 2019, 62: 810–817.

    [50] [50] WOLF M, MAY B M, CABANA J. Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping[J].Chem Mater, 2017, 29(8): 3347–3362.

    [51] [51] XU Y, HU E, ZHANG K, et al. In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different Rates[J]. ACS Energy Lett, 2017, 2(5): 1240–1245.

    [52] [52] YU Y S, KIM C, LIU Y, et al. Nonequilibrium pathways during electrochemical phase transformations in single crystals revealed by dynamic chemical imaging at nanoscale resolution[J]. Adv Energy Mater, 2015, 5(7): 1402040.

    [53] [53] ULVESTAD A, SINGER A, CLARK J N, et al. Topological defect dynamics in operando battery nanoparticles[J]. Science, 2015,348(6241): 1344–1347.

    [54] [54] SUN L, JIANG D, LI M, et al. Collision and Oxidation of Single LiCoO2 nanoparticles studied by correlated optical imaging and

    [55] [55] JIANG D, JIANG Y, LI Z, et al. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J Am Chem Soc, 2017, 139(1): 186–192.

    [56] [56] YUAN T, WANG W. Studying the electrochemistry of single nanoparticles with surface plasmon resonance microscopy[J]. Curr Opin Electrochem, 2017, 6(1): 17–22.

    [57] [57] LUCAS I T, MCLEOD A S, SYZDEK J S, et al. IR near-field spectroscopy and imaging of single LixFePO4 microcrystals[J]. Nano Lett, 2015, 15(1): 1–7.

    [58] [58] TSAI E H R, BILLAUD J, SANCHEZ D F, et al. Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials[J].iScience, 2019, 11: 356–365.

    [59] [59] ASSEFA T A, SUZANA A F, WU L, et al. Imaging the phase transformation in single particles of the lithium titanate anode for lithium-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(1): 111–118.

    [60] [60] EVANS R C, NILSSON Z N, SAMBUR J B. High-throughput single-nanoparticle-level imaging of electrochemical ion insertion reactions[J]. Anal Chem, 2019, 91(23): 14983–14991.

    [61] [61] YAMANAKA T, MINATO T, OKAZAKI K-I, et al. Evolution and migration of lithium-deficient phases during electrochemical delithiation of large single crystals of LiFePO4[J]. ACS Appl Energy Mater, 2018, 1(3): 1140–1145.

    [62] [62] XU Z, HOU D, KAUTZ D J, et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single-particle synchrotron measurements[J]. Adv Mater, 2020,32(37): 2003417.

    [63] [63] EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716–720.

    [64] [64] ZHANG X, VAN HULZEN M, SINGH D P, et al. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling[J]. Nat Commun, 2015, 6(1): 8333.

    [65] [65] WANG J, CHEN-WIEGART Y-C K, WANG J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nat Commun, 2014, 5(1): 4570.

    [66] [66] WEKER J N, LIU N, MISRA S, et al. In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles[J]. Energy Envir Sci, 2014, 7(8): 2771–2777.

    Tools

    Get Citation

    Copy Citation Text

    XU Wei, ZOU Guoqiang, HOU Hongshuai, JI Xiaobo. Single Particle Analysis Method for Battery Materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 185

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jul. 22, 2021

    Accepted: --

    Published Online: Nov. 14, 2022

    The Author Email: Xiaobo JI (464617745@qq.com)

    DOI:10.14062/j.issn.0454-5648.20210592

    Topics