Acta Photonica Sinica, Volume. 44, Issue 9, 923005(2015)
Transmission through Subwavelength Metallic Annular Aperture Arrays by Excitation Mechanism of Magnetic Resonance
[1] [1] EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.
[2] [2] GORDON R, HUGHES M, LEATHEM B, et al. Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film[J]. Nano Letters, 2005, 5(7): 1243-1246.
[3] [3] BAIDA F I. Light transmission by subwavelength annular aperture arrays in metallic films[J]. Optics Communications, 2002, 209(1): 17-22.
[4] [4] BAIDA F I, BELKHIR A, VAN LABEKE D, et al. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes[J]. Physical Review B, 2006, 74(20): 3840-3845.
[5] [5] HAFTEL M, SCHLOCKERMANN C, BLUMBERG G. Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons[J]. Physical Review B, 2006, 74(23): 4070-4079.
[6] [6] ORBONS S M, HAFTEL M I, SCHLOCKERMANN C, et al. Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays[J].Optics Letters, 2008, 33(8): 821-823.
[7] [7] WU Shan, WANG Qian-jin, YIN Xiao-gang, et al. Enhanced optical transmission: Role of the localized surface plasmon[J]. Applied Physics Letters, 2008, 93(10): 101113.
[9] [9] NDAO A, SALVI J, SALUT R, et al. Resonant optical transmission through sub-wavelength annular apertures caused by a plasmonic transverse electromagnetic (TEM) mode[J]. Journal of Optics, 2014, 16(12): 125009.
[10] [10] PENDRY J B, HOLDEN A J. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.
[11] [11] LINDEN S, ENKRICH C, WEGENER M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700): 1351-1353.
[12] [12] YEN T J. Terahertz magnetic response from artificial materials[J]. Science, 2004, 303(5663): 1494-1496.
[13] [13] WANG Li-ping, ZHANG Zhuo-min. Resonance transmission or absorption in deep gratings explained by magnetic polaritons[J]. Applied Physics Letters, 2009, 95(11): 111904.
[14] [14] WANG Li-ping, ZHANG Zhuo-min. Phonon-mediated magnetic polaritons in the infrared region[J].Optics Express, 2011, 19(S2): A126-A135.
[15] [15] ENGHETA N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845): 1698-1702.
[16] [16] HUANG Wan-xia, WANG Qian-jin, YIN Xiao-gang, et al. Optical resonances in a composite asymmetric plasmonic nanostructure[J]. Journal of Applied Physics, 2011, 109(11): 114310.
[17] [17] JIANG Xiao-xiao, GU Qiong-chan, WANG Feng-wen, et al. Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography[J]. Materials Letters, 2013, 100: 192-194.
[18] [18] HAMIDI M, CHEMROUK C, BELKHIR A, et al. SFM-FDTD analysis of triangular-lattice AAA structure: Parametric study of the TEM mode[J]. Optics Communications, 2014, 318: 47-52.
[19] [19] ABBASI F, ENGHETA N. Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks[J]. Optics Express, 2014, 22(21): 25109.
[20] [20] CHEN Chien-jing, CHEN Jia-shiang,CHEN Yu-bin. Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton[J]. Journal of the Optical Society of America B, 2011, 28(8): 1798-1806.
[21] [21] ZHOU Jiang-feng, ECONOMON E N, KOSCHNY T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.
Get Citation
Copy Citation Text
GUO Ya-dong, YUAN Zong-heng, YUAN Yu-yang, WANG Sheng, XIONG Xian-ming. Transmission through Subwavelength Metallic Annular Aperture Arrays by Excitation Mechanism of Magnetic Resonance[J]. Acta Photonica Sinica, 2015, 44(9): 923005
Received: Mar. 16, 2015
Accepted: --
Published Online: Oct. 22, 2015
The Author Email: Ya-dong GUO (363216180@qq.com)