Journal of Terahertz Science and Electronic Information Technology , Volume. 22, Issue 10, 1073(2024)
Multifunctional dichroic metasurface based on catenary structure
[1] [1] LUO Xiangang. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016,9(2):138-150. doi:10.1007/s12200-016-0632-1.
[2] [2] LUO Xiangang. Metamaterials and metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1900885. doi: 10.1002/adom.201900885.
[3] [3] LUO X G, TSAI D P, GU M, et al. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion[J]. Chemical Society Reviews, 2019,48(8):2458-2494. doi:10.1039/c8cs00864g.
[4] [4] YU N F, GENEVET P, AIETA F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013,19(3):4700423. doi:10.1109/JSTQE.2013.2241399.
[5] [5] HUANG Yijia, XIAO Tianxiao, XIE Zhengwei, et al. Single-layered phase-change metasurfaces achieving efficient wavefront manipulation and reversible chiral transmission[J]. Optics Express, 2022,30(2):1337-1350. doi:10.1364/OE.447545.
[6] [6] HUANG Yijia,XIAO Tianxiao,XIE Zhengwei,et al. Single-layered reflective metasurface achieving simultaneous spin-selective perfect absorption and efficient wavefront manipulation[J]. Advanced Optical Materials, 2021,9(5):2001663. doi:10.1002/adom.202001663.
[7] [7] HUANG Yijia, XIAO Tianxiao, CHEN Shuai, et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electronic Advances, 2023,6(7):220073. doi:10.29026/oea.2023.220073.
[8] [8] YUE Zhen,LI Jitao,LI Jie,et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electronic Science, 2022,1(3):210014. doi:10.29026/oes.2022.210014.
[9] [9] YANG Zhengmei,ZHOU Yanming,CHEN Yiqin,et al. Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber[J]. Advanced Optical Materials, 2016,4(8):1196-1202. doi:10.1002/adom.201600110.
[10] [10] MA Ju, HUANG Yijia, PU Mingbo, et al. Inverse design of broadband metasurface absorber based on convolutional autoencoder network and inverse design network[J]. Journal of Physics D: Applied Physics, 2020, 53(46): 464002. doi: 10.1088/1361-6463/aba3ec.
[11] [11] YU P, BESTEIRO L V, HUANG Y J, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019, 7(3):1800995. doi:10.1002/adom.201800995.
[12] [12] YANG Yihao, JING Liqiao, ZHENG Bin, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Advanced Materials, 2016,28(32):6866-6871. doi:10.1002/adma.201600625.
[13] [13] HUANG Yijia, PU Mingbo, ZHANG Fei, et al. Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing[J]. Advanced Optical Materials, 2019,7(7):1801480. doi:10.1002/adom.201801480.
[14] [14] QIAN Chao,ZHENG Bin,SHEN Yichen,et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020,14(6):383-390. doi:10.1038/s41566-020-0604-2.
[15] [15] GAO Hui,FAN Xuhao,XIONG Wei,et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electronic Advances, 2021,4(11):210030. doi:10.29026/oea.2021.210030.
[16] [16] DENG Zilan, DENG Junhong, ZHUANG Xin, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5):2885-2892. doi:10.1021/acs.nanolett.8b00047.
[17] [17] ZHENG G X, MHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015,10(4):308-312. doi:10.1038/nnano.2015.2.
[18] [18] ZHANG Xiaohao, PU Mingbo, GUO Yinghui, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Advanced Functional Materials, 2019,29(22):1809145. doi:10.1002/adfm.201809145.
[19] [19] YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 2014,14(11):6526-6532. doi:10.1021/nl503104n.
[20] [20] PLUM E,ZHELUDEV N I. Chiral mirrors[J]. Applied Physics Letters, 2015,106(22):221901. doi:10.1063/1.4921969.
[21] [21] HUANG Hui, QIN Shuai, JIE Kaiqian, et al. Dynamic generation of giant linear and circular dichroism via phase-change metasurface[J]. Optics Express, 2021,29(25):40759-40769. doi:10.1364/OE.446028.
[22] [22] LUO Xiangang, PU Mingbo, GUO Yinghui, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 2020,8(23):2001194. doi:10.1002/adom.202001194.
[23] [23] PU Mingbo, LI Xiong, MA Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015,1(9):e1500396. doi:10.1126/sciadv.1500396.
[24] [24] HUANG Yijia,LUO Jun,PU Mingbo,et al. Catenary electromagnetics for ultra-broadband lightweight absorbers and large-scale flat antennas[J]. Advanced Science, 2019,6(7):1801691. doi:10.1002/advs.201801691.
[25] [25] ZHANG Fei, PU Mingbo, LI Xiong, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Advanced Materials, 2021,33(11):e2008157. doi:10.1002/adma.202008157.
[26] [26] GUO Yinghui,MA Xiaoliang,PU Mingbo,et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens[J]. Advanced Optical Materials, 2018,6(19):1800592. doi:10.1002/adom.201800592.
[27] [27] LI Xiong, PU Mingbo, WANG Yangqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016,4(5):659-663. doi:10.1002/adom.201500713.
[28] [28] GUO Yinghui, HUANG Yijia, LI Xiong, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019,7(18):1900503. doi:10.1002/adom.201900503.
[29] [29] LUO Xiangang, PU Mingbo, LI Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017,6(6):e16276. doi:10.1038/lsa.2016.276.
[30] [30] PALIK E D. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1998.
[31] [31] HUANG Yijia,XIE Xin,PU Mingbo,et al. Dual-functional metasurface toward giant linear and circular dichroism[J]. Advanced Optical Materials, 2020,8(11):1902061.
[32] [32] WANG Shuai, DENG Zilan, WANG Yujie, et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincar sphere polarizers[J]. Light: Science & Applications, 2021,10(1):24. doi:10.1038/s41377-021-00468-y.
[33] [33] ZOU H L, NASH G R. Efficient mid-infrared linear-to-circular polarization conversion using a nanorod-based metasurface[J]. Optical Materials Express, 2022,12(12):4565. doi:10.1364/ome.473926.
[34] [34] PLUM E,FEDOTOV V A,ZHELUDEV N I. Extrinsic electromagnetic chirality in metamaterials[J]. Journal of Optics A: Pure and Applied Optics, 2009,11(7):074009. doi:10.1088/1464-4258/11/7/074009.
[35] [35] PLUM E. Extrinsic chirality: tunable optically active reflectors and perfect absorbers[J]. Applied Physics Letters, 2016, 108(24):241905. doi:10.1063/1.4954033.
[36] [36] JIANG Ruizhe, MA Qian, LIANG Jingcheng, et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM-wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6593-6605. doi:10.1109/TAP.2023.3281879.
[37] [37] CAO Tun,WEI Chenwei,MAO Libang,et al. Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array[J]. Scientific Reports, 2014(4):7442. doi:10.1038/srep07442.
Get Citation
Copy Citation Text
LAN Xiang, DENG Qinrong, ZHANG Wenting, CUI Hengyu, TANG Ziyi, HU Jie, HUANG Yijia. Multifunctional dichroic metasurface based on catenary structure[J]. Journal of Terahertz Science and Electronic Information Technology , 2024, 22(10): 1073
Category:
Received: Apr. 16, 2024
Accepted: Dec. 10, 2024
Published Online: Dec. 10, 2024
The Author Email: