Chinese Journal of Quantum Electronics, Volume. 40, Issue 6, 899(2023)

Band calculation and spectral analysis of diamond crystal

LI Haidong1,2,3, SHEN Yu1,2、*, WEN Ya4, ZHANG Shenjin1,2、**, ZONG Nan1,2, BO Yong1,2, and PENG Qinjun1,2
Author Affiliations
  • 1Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 2Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Institute of Optical Physics and Engineering Technology, Qilu Zhongke, Jinan 250000, China
  • show less
    References(69)

    [1] Williams R J, Nold J, Strecker M et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 9, 405-411(2015).

    [2] Pashinin V P, Ralchenko V G, Bolshakov A P et al. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy[J]. Laser Physics Letters, 13, 065001(2016).

    [3] Friel I, Geoghegan S L, Twitchen D J et al. Development of high quality single crystal diamond for novel laser applications[C], 7838, 340-347(2010).

    [4] Balmer R S, Brandon J R, Clewes S L et al. Chemical vapour deposition synthetic diamond: Materials, technology and applications[J]. Journal of Physics: Condensed Matter, 21, 364221(2009).

    [5] Savitski V G, Reilly S, Kemp A J. Steady-state Raman gain in diamond as a function of pump wavelength[J]. IEEE Journal of Quantum Electronics, 49, 218-223(2013).

    [6] Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 35, 3874-3876(2010).

    [7] Yang X Z, Feng Y. Diamond Raman lasers for sodium guide star[J]. Chinese Journal of Quantum Electronics, 37, 447-455(2020).

    [8] Černý P, Zverev P G, Jelínková H et al. Efficient Raman shifting of picosecond pulses using BaWO4 crystal[J]. Optics Communications, 177, 397-404(2000).

    [9] Findeisen J, Eichler H J, Peuser P et al. Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers[J]. Applied Physics B, 70, 159-162(2000).

    [10] Lin H Y, Huang X H, Sun D et al. Passively Q-switched multi-wavelength Nd: YVO4 self-Raman laser[J]. Journal of Modern Optics, 63, 2235-2237(2016).

    [11] Kaminskii A A, Ueda K I, Eichler H J et al. Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 194, 201-206(2001).

    [12] Mochalov I V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2: Nd3+-(KGW: Nd)[J]. Optical Engineering, 36, 1660-1669(1997).

    [13] Basiev T T, Sobol A A, Zverev P G et al. Raman spectroscopy of crystals for stimulated Raman scattering[J]. Optical Materials, 11, 307-314(1999).

    [14] Martineau P M, Gaukroger M P, Guy K B et al. High crystalline quality single crystal chemical vapour deposition diamond[J]. Journal of Physics: Condensed Matter, 21, 364205(2009).

    [15] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm[J]. Optics Letters, 39, 4037-4040(2014).

    [16] Demetriou G, Kemp A J, Savitski V. 100 kW peak power external cavity diamond Raman laser at 2.52 μm[J]. Optics Express, 27, 10296-10303(2019).

    [17] Williams R J, Spence D J, Lux O et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond[J]. Optics Express, 25, 749-757(2017).

    [18] Heinzig M, Walbaum T, Williams R J et al. High-power single-pass pumped diamond Raman laser[C](2017).

    [19] Antipov S, Sabella A, Williams R J et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam[J]. Optics Letters, 44, 2506-2509(2019).

    [20] Shao Z H, Li X X, Shen Y J et al. Wavelength-tunable diamond Raman laser at ∼2.5 μm[J]. Laser Physics Letters, 18, 075001(2021).

    [21] Dean P J, Lightowlers E C, Wight D R. Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond[J]. Physical Review, 140, A352-A368(1965).

    [22] Mehl M J, Pickett W E. Zone-center Raman active modes in cubic and hexagonal diamond[C](1989).

    [23] Klein C A, Hartnett T M, Robinson C J. Critical-point phonon frequencies of diamond[J]. Physical Review B, 45, 12854-12863(1992).

    [24] Vogelgesang R, Alvarenga A D, Kim H et al. Multiphonon Raman and infrared spectra of isotopically controlled diamond[J]. Physical Review B, 58, 5408-5416(1998).

    [25] Wu B R, Xu J A. Total energy calculations of the lattice properties of cubic and hexagonal diamond[J]. Physical Review B, 57, 13355-13358(1998).

    [26] Wu B R. Structural and vibrational properties of the 6H diamond: First-principles study[J]. Diamond and Related Materials, 16, 21-28(2007).

    [27] Fu Z J, Ji G F, Chen X R et al. First-principle calculations for elastic and thermodynamic properties of diamond[J]. Communications in Theoretical Physics, 51, 1129-1134(2009).

    [28] Huang E P. High-temperature and pressure Raman spectroscopy of diamond[J]. Materials Letters, 64, 580-582(2010).

    [29] Yue S Y, Qin G Z, Zhang X L et al. Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initio study[J]. Physical Review B, 95, 085207(2017).

    [30] Zhou J H, Li D H. The phonon transport properties in cubic graphene with entirely sp2 hybridization state[J]. Physics Letters A, 404, 127410(2021).

    [31] Kittel C[M]. Introduction to Solid State Physics(2005).

    [32] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 136, B864-B871(1964).

    [33] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 140, A1133-A1138(1965).

    [34] Wang L L, Wan Q, Hu W J et al. The local states density and band structure of diamond and graphite studied by first principles molecular dynamics[J]. Computers and Applied Chemistry, 27, 735-738(2010).

    [35] Straumanis M E, Aka E Z. Precision determination of lattice parameter, coefficient of thermal expansion and atomic weight of carbon in Diamond1[J]. Journal of the American Chemical Society, 73, 5643-5646(1951).

    [36] Spehar J. Diamonds (atomic structure and properties)[J]. IEEE Potentials, 10, 9-12(1991).

    [37] Sheng X L, Yan Q B, Ye F et al. T-carbon: A novel carbon allotrope[J]. Physical Review Letters, 106, 155703(2011).

    [38] Huang K, Han R Q[M]. Solid State Physics(1988).

    [39] Bai Z X, Yang X Z, Chen H et al. Research progress of high-power diamond laser technology[J]. Infrared and Laser Engineering, 49, 1-13(2020).

    [40] Qin S[M]. Fundamentals of Crystallography, 22-24(2004).

    [41] Gao S P. Band gaps and dielectric functions of cubic and hexagonal diamond polytypes calculated by many-body perturbation theory[J]. Physica Status Solidi (b), 252, 235-242(2015).

    [42] Barnard A S, Russo S P, Snook I K. Comparative Hartree-Fock and density-functional theory study of cubic and hexagonal diamond[J]. Philosophical Magazine B, 82, 1767-1776(2002).

    [43] Philipp H R, Taft E A. Optical properties of diamond in the vacuum ultraviolet[J]. Physical Review, 127, 159-161(1962).

    [44] Phillip H R, Taft E A. Kramers-Kronig analysis of reflectance data for diamond[J]. Physical Review, 136, A1445-A1448(1964).

    [45] Zhao L, Xie Y Z, Chen R H et al. Analysis on defect formation energy and band structure of C, N Co-doped anatase TiO2[J]. Journal of Synthetic Crystals, 47, 2663-2668(2018).

    [46] Samantaray C B, Sim H, Hwang H. The electronic structures and optical properties of BaTiO3 and SrTiO3 using first-principles calculations[J]. Microelectronics Journal, 36, 725-728(2005).

    [47] Cai M Q, Yin Z, Zhang M S. First-principles study of optical properties of Barium titanate[J]. Applied Physics Letters, 83, 2805-2807(2003).

    [48] Salehpour M R, Satpathy S. Comparison of electron bands of hexagonal and cubic diamond[J]. Physical Review B, 41, 3048-3052(1990).

    [49] Li X Z, Gómez-Abal R, Jiang H et al. Impact of widely used approximations to the G0W0method: An all-electron perspective[J]. New Journal of Physics, 14, 023006(2012).

    [50] Bohr N. LXXIII.On the constitution of atoms and molecules[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26, 857-875(1913).

    [51] Huang Y Y[M]. Atomic Physics Tutorial, 117-122(2012).

    [53] Sharma G. Carbon allotropes: Metal-complex chemistry, properties and applications[J]. MRS Bulletin, 45, 678(2020).

    [54] Simmons J H, Potter K S[M]. Optical Materials, 106-110(2000).

    [55] Jones R, King T. Calculation of local density of states at defects in diamond and silicon[J]. Physica B+C, 116, 72-75(1983).

    [56] Ward A, Broido D A, Stewart D A et al. Ab initiotheory of the lattice thermal conductivity in diamond[J]. Physical Review B, 80, 125203(2009).

    [57] Sparavigna A. Influence of isotope scattering on the thermal conductivity of diamond[J]. Physical Review B, 65, 064305(2002).

    [58] Warren J L, Yarnell J L, Dolling G et al. Lattice dynamics of diamond[J]. Physical Review, 158, 805-808(1967).

    [59] Sham L J. Electronic contribution to lattice dynamics in insulating crystals[J]. Physical Review, 188, 1431-1439(1969).

    [60] Occelli F, Loubeyre P, LeToullec R. Properties of diamond under hydrostatic pressures up to 140 GPa[J]. Nature Materials, 2, 151-154(2003).

    [61] Ager J W, Veirs D K, Rosenblatt G M. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition[J]. Physical Review B, 43, 6491-6499(1991).

    [62] Maezono R, Ma A, Towler M D et al. Equation of state and Raman frequency of diamond from quantum Monte Carlo simulations[J]. Physical Review Letters, 98, 025701(2007).

    [63] Lax M, Burstein E. Infrared lattice absorption in ionic and homopolar crystals[J]. Physical Review, 97, 39-52(1955).

    [64] Li Z, Pan W. Lattice dynamical properties and thermal transport properties of CeO2: A first-principle study[J]. Rare Metal Materials and Engineering, 49, 510-514(2020).

    [65] Savitski V G, Friel I, Hastie J E et al. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers[J]. IEEE Journal of Quantum Electronics, 48, 328-337(2012).

    [66] Mildren R P. Intrinsic Optical Properties of Diamond[M]. Mildren R P, Rabeau J R. Optical Engineering of Diamond(2013).

    [67] Clark C D, Dean P J, Harris P V. Intrinsic edge absorption in diamond[J]. Proceedings of the Royal Society of London Series A(Mathematical and Physical Sciences), 277, 312-329(1964).

    [68] Zhang Z Z, Zhang C H, Yan W J et al. Influence of doping on photoelectric properties of new two-dimensional material phosphorene[J]. Chinese Journal of Quantum Electronics, 38, 108-115(2021).

    [69] Li Y Q, Bai Z X, Chen H et al. Eye-safe diamond Raman laser[J]. Results in Physics, 16, 102853(2020).

    [70] Birman J L. Theory of Crystal Space Groups and Infra-red and Raman Lattice Processes of Insulating Crystals[M]. Birman J L. Theory of Crystal Space Groups and Lattice Dynamics(1974).

    Tools

    Get Citation

    Copy Citation Text

    Haidong LI, Yu SHEN, Ya WEN, Shenjin ZHANG, Nan ZONG, Yong BO, Qinjun PENG. Band calculation and spectral analysis of diamond crystal[J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 899

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 4, 2022

    Accepted: --

    Published Online: Dec. 22, 2023

    The Author Email: SHEN Yu (shenyu@mail.ipc.ac.cn), ZHANG Shenjin (zhangshenjin@mail.ipc.ac.cn)

    DOI:10.3969/j.issn.1007-5461.2023.06.010

    Topics