Journal of Inorganic Materials, Volume. 39, Issue 10, 1107(2024)

Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials

Rui SHI1,2, Wei LIU1,2,3, Lin LI1,2, Huan LI1,2, Zhijun ZHANG1,2, Guanghui RAO1,2、*, and Jingtai ZHAO1,2、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • 22. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China
  • 33. School of Mechanical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
  • show less
    References(22)

    [1] P S SHAO, P X XIONG, D L JIANG et al. Tunable and enhanced mechanoluminescence in LiYGeO4: Tb3+via Bi3+→Tb3+ energy transfer. Journal of Materials Chemistry C, 11, 2120(2023).

    [2] T HU, Y GAO, B WANG et al. A new class of battery-free, mechanically powered, piezoelectric Ca5Ga6O14: Tb3+ phosphors with self-recoverable luminescence. Journal of Materials Chemistry C, 10(2022).

    [3] S Q LIU, Y T ZHENG, D F PENG et al. Near-infrared mechanoluminescence of Cr3+ doped gallate spinel and magnetoplumbite smart materials. Advanced Functional Materials, 33(2023).

    [4] A QASEM, P P XIONG, Z J MA et al. Recent advances in mechanoluminescence of doped zinc sulfides. Laser & Photonics Reviews, 15(2021).

    [5] P X XIONG, B L HUANG, D F PENG et al. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8. Advanced Functional Materials, 31(2021).

    [6] F T FREUND. Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. Journal of Scientific Exploration, 17(2003).

    [7] H SONG, S TIMILSINA, J Y JUNG et al. Improving the sensitivity of the mechanoluminescence composite through functionalization for structural health monitoring. ACS Applied Materials & Interfaces, 14(2022).

    [8] N TERASAKI, C N XU. Historical-log recording system for crack opening and growth based on mechanoluminescent flexible sensor. IEEE Sensors Journal, 13(2013).

    [9] Y JIA, M YEI, W Y JIA. Stress-induced mechanoluminescence in SrAl2O4: Eu2+, Dy3+. Optical Materials, 28(2006).

    [10] S M JEONG, S SONG, K I JOO et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy & Environmental Science, 7(2014).

    [11] Y D SONG, J Q XIAO, L ZHAO et al. Multi-mode mechanoluminescence of fluoride glass ceramics from rigid to flexible media toward multi-scene mechanical sensors. Journal of Materials Chemistry A, 12(2024).

    [12] B P CHANDRA, A S RATHORE. Classification of mechanoluminescence. Crystal Research and Technology, 30(1995).

    [13] J C G BÜNZLI, K L WONG. Lanthanide mechanoluminescence. Journal of Rare Earths, 36(2018).

    [14] J L CAO, S S DING, Y P ZHOU et al. Unveiling the potential of sunlight-driven multifunctional blue long persistent luminescent materials via cutting-edge trap modulation strategies. Advanced Optical Materials, 12, 2302011(2024).

    [15] S WU, P X XIONG, D L JIANG et al. Single Tb3+ ion doped ratiometric mechanoluminescence for tunable stress visualization. Chemical Engineering Journal, 469, 143961(2023).

    [16] Y XIAO, P X XIONG, S ZHANG et al. Deep-red to NIR mechanoluminescence in centrosymmetric perovskite MgGeO3: Mn2+ for potential dynamic signature anti-counterfeiting. Chemical Engineering Journal, 453, 139671(2023).

    [17] Y XIAO, P X XIONG, Y K LE et al. Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+ doped gallate compound. Nano Energy, 120, 109086(2024).

    [18] Y Q BAI, X P GUO, B R TIAN et al. Self-charging persistent mechanoluminescence with mechanics storage and visualization activities. Advanced Science, 9(2022).

    [19] P S SHAO, P X XIONG, Y XIAO et al. Self-recoverable NIR mechanoluminescence from Cr3+ doped perovskite type aluminate. Advanced Powder Materials, 3(2024).

    [20] X Y QIU, J Z LIU, B ZHOU et al. Bioinspired bimodal mechanosensors with real-time, visualized information display for intelligent control. Advanced Functional Materials, 33(2023).

    [21] S H HU, Z W LONG, Y G WEN et al. An orange-emitting phosphor BaSrGa4O8: Bi3+, K+ with unique one-dimensional chain structure for high index color WLEDs. Journal of the American Ceramic Society, 103(2020).

    Tools

    Get Citation

    Copy Citation Text

    Rui SHI, Wei LIU, Lin LI, Huan LI, Zhijun ZHANG, Guanghui RAO, Jingtai ZHAO. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 4, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: RAO Guanghui (rgh@guet.edu.cn), ZHAO Jingtai (jtzhao@guet.edu.cn)

    DOI:10.15541/jim20240095

    Topics