Acta Optica Sinica, Volume. 41, Issue 21, 2123002(2021)

Structural Design of Near Ultraviolet Nadir Imaging Spectrometer

Jianyu Yang1,2,3、*, Xuan Yang1,2, and Jianhua Zheng1,2
Author Affiliations
  • 1National Space Science Center, Chinese Academy of Sciences, Beijing 101499, China
  • 2Key Laboratory of Integrated Avionics and Information Technology for Complex Aerospace Systems, Beijing 101499, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(29)
    Optical path of near ultraviolet nadir imaging spectrometer
    Outline of near ultraviolet nadir imaging spectrometer equipment
    Iterative convergence curves. (a) Main mirror; (b) secondary mirror
    Distributions of material. (a) Main mirror; (b) secondary mirror
    Model after process treatment. (a) Main mirror; (b) secondary mirror
    Mechanism layou of main mirror module
    Mechanism layout of secondary mirror module
    Outline drawing of spectrometer module structure
    Structural outline drawing of lens group structure
    Outline drawing of optical grating structure
    Outline drawing of detector module
    Cloud diagram of first-order vibration mode for equipment
    Surface deformation. (a) Main mirror; (b) secondary mirror
    MTF at 10 ℃
    MTF at 30 ℃
    Photograph of equipment mechanics test
    Experimental curve of equipment measuring points
    Comparison of spectral characteristics before and after mechanics experiments. (a) Before experiment; (b) after experiment
    • Table 1. Main technical indicators

      View table

      Table 1. Main technical indicators

      ParameterValue
      Channel spectral characteristicChannel 1: central wavelength 340 nm, bandwidth~2 nm
      Channel 2: central wavelength 354 nm, bandwidth~2 nm
      Channel 3: central wavelength 380 nm, bandwidth~2 nm
      Channel 4: central wavelength 388 nm, bandwidth~2 nm
      Spatial resolution7 km×7 km (subsatellite point)
      Signal to noise ratio (SNR)>1000
    • Table 2. Natural frequency and vibration mode of the first 5 orders

      View table

      Table 2. Natural frequency and vibration mode of the first 5 orders

      OrderNatural frequency /HzVibration mode
      1205.69Probe module swings along Y-axis
      2261.08Probe module swings around X-axis
      3293.30Secondary mirror module swings around Y-axis
      4385.98Device swings around X-axis
      5448.22Spectrometer module up and down swing
    • Table 3. Acceleration environment test conditions

      View table

      Table 3. Acceleration environment test conditions

      ParameterValue
      Acceleration along X-axis of the satellite10g
      Acceleration along Y-axis of the satellite2g
      Acceleration along Z-axis of the satellite2g
    • Table 4. Results of overload analysis

      View table

      Table 4. Results of overload analysis

      Equipment compositionMaterialMaximum deformationMaximum stressAllowable stress /MPa
      Maximum deformation /mmDistribution locationMaximum stress /MPaDistribution location
      Aluminum alloy structure70750.0589Upper right part of detector module50.4Mounting hole of imaging objective lens frame and chassis bottom plate of spectrometer module325
      LensFused quartz0.0420The spectrometer module images the objective lens4.74The spectrometer module collimates the reflector36
      Heat insulated padFiber glass0.0152Left heat insulated pad middle3.57Installation hole for heat insulated pad on right side32
    • Table 5. X direction sinusoidal vibration test conditions

      View table

      Table 5. X direction sinusoidal vibration test conditions

      ParameterValue
      Frequency range /Hz5-1212-2525-3535-6060-7060-100
      Vibration level3.88 mm2.25g4.5g4.5g3g3g
    • Table 6. Y, Z direction sinusoidal vibration test conditions

      View table

      Table 6. Y, Z direction sinusoidal vibration test conditions

      ParameterValue
      Frequency range /Hz5-1212-2525-3535-100
      Vibration level11.65 mm6.75g5.25g5.25g
    • Table 7. Sinusoidal vibration response results

      View table

      Table 7. Sinusoidal vibration response results

      Sinusoidal vibration loading directionMaximum acceleration responseMaximum stress response
      AccelerationMagnificationStress /MPaPositionAllowable stress /MPa
      X-axis4.86g1.0828.6Spectrometer lens screw hole at the bottom325
      Y-axis6.79g1.0121.6Spectrometer and chassis bottom flange
      Z-axis6.81g1.0122.8Spectrometer ear
    • Table 8. Random vibration test conditions

      View table

      Table 8. Random vibration test conditions

      Frequency range /Hz20-100100-600600-2000
      Power spectral density+3 dB/oct0.09 g2·Hz-1-9 dB/oct
      Total root mean square acceleration (Grms)8.6g
      Test directionX, Y, Z triaxial
    • Table 9. Random vibration response results

      View table

      Table 9. Random vibration response results

      Random vibration directionMaximum acceleration responseMaximum stress response
      Result of random vibration analysis GrmsMagnificationStress /MPaPositionAllowable stress /MPa
      X-axis167.8g19.58.75Top surface light inlet rear plate section325
      Y-axis24.99g2.95.29Spectrometer lens holder upper end
      Z-axis32.35g3.80.51Spectrometer lens back side
    • Table 10. Extremum of displacement in working conditions

      View table

      Table 10. Extremum of displacement in working conditions

      Working conditionMaximum displacement of mirror node /mm
      010.1143
      020.07121
    • Table 11. Spectral position change results

      View table

      Table 11. Spectral position change results

      Wavelength /nmBefore mechanics experiment (pixel position)After mechanics experiment (pixel position)
      340124.5124.8
      354360.5360.1
      380425.5425.3
      388507.5507.2
    Tools

    Get Citation

    Copy Citation Text

    Jianyu Yang, Xuan Yang, Jianhua Zheng. Structural Design of Near Ultraviolet Nadir Imaging Spectrometer[J]. Acta Optica Sinica, 2021, 41(21): 2123002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Oct. 26, 2020

    Accepted: May. 18, 2021

    Published Online: Oct. 29, 2021

    The Author Email: Yang Jianyu (wangpancad@126.com)

    DOI:10.3788/AOS202141.2123002

    Topics