Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 16(2022)

Na0.67Fe0.5Mn0.5O2 Cathode Material for Sodium Ion Battery with Modified Waste LiCoO2

HOU Xianglong*... FENG Xuyong, XU Yijian, WU Chenhua, MA Jian, YE Peng and XIANG Hongfa |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(33)

    [1] [1] ZHANG X X, LI L, FAN E, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chem Soc Rev, 2018.47(19): 7239–7302.

    [2] [2] CHEN M Y, MA X T, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622–2646.

    [3] [3] YU J Z, WANG X, ZHOU M Y, et al. A redox targeting-based material recycling strategy for spent lithium-ion batteries[J]. Energy Environ Sci, 2019, 12(9): 2672–2677.

    [4] [4] KANG D H P, CHEN M , OGUNSEITAN O. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste[J]. Environ Sci Technol, 2013, 47(10): 5495–5503.

    [5] [5] HU, J T, ZHANG J L, LI H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries[J]. J Power Sources, 2017, 351(31): 192–199.

    [6] [6] LI L, QU W J, ZHANG X X, et al. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. J Power Sources, 2015, 282: 544–551.

    [7] [7] KALLURI S, YOON M, JO M, et al. Li-ion cells: Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv Energy Mater, 2017, 7(1):216–223.

    [8] [8] YANG S, CHEN G, CHEN Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards highperformance active particles[J]. Green Chem, 2018, 20(4): 851–862.

    [9] [9] MENG Q, ZHANG Y J, DONG P. A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects[J]. Waste Manage,2018, 71: 372–380.

    [10] [10] NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chem,2015, 17(2): 1276–1280.

    [11] [11] VERNICA P, SERRAS P, VILLALUENGA I, et al. Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ Sci, 2012, 5(3): 584–591.

    [12] [12] HUON H M, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J].Energy Environ Sci, 2015, 8(1): 81–102.

    [13] [13] HOU H, GAN B, GONNG Y et al. P2-type Na0.67Ni0.23Mg0.1Mn0.67O2 as a high-performance cathode for a sodium-ion battery[J]. Inorg Chem,2016, 55(17): 9033–9037.

    [14] [14] ZHAO J, XU J, LEE D H, et al. Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries[J]. J Power Sources, 2014, 264(15): 235–239.

    [15] [15] KUMAR V K, GHOSH S, BISWAS S, et al. P2-type Na0.67Mn0.5Fe0.5O2 synthesized by solution combustion method as an efficient cathode material for sodium-ion batteries[J]. J Electrochem Soc, 2021, 168(3): 030512.

    [16] [16] XU J T, CHOU S L, WANG J L, et al. Layered P2-Na0.66Fe0.5Mn0.5O2 cathode material for rechargeable sodium-ion batteries[J].Chemelectrochem, 2014, 1(2): 371–374.

    [17] [17] YING B, , ZHAO L X, WU C, et al. Enhanced sodium ion storage behavior of P2-type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route[J]. ACS Appl Mater Interf, 2016, 8(4): 2857–2865.

    [18] [18] YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat Mater, 2012, 11(6): 512–517.

    [19] [19] WANG H B, GAO R, LI Z Y, et al. Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material[J]. Inorg Chem, 2018, 57(9): 5249–5257.

    [20] [20] ALTIN S, ALTUNDA S, ALTIN E, et al. An investigation of the improvement in energy storage performance of Na2/3Mn1/2Fe1/2O2 by systematic Al-substitution[J]. J Mater Sci: Mater Electr, 2020, 31(17):14784–14794.

    [21] [21] PARK J K, PARK G G, KWAK H H, et al. Enhanced rate capability and cycle performance of titanium-substituted P2-type Na0.67Fe0.5Mn0.5O2 as a cathode for sodium-ion batteries[J]. ACS Omega, 2018, 3(1):361–368.

    [22] [22] DARBAR D, MURALIDHARAN N, HERMANN R P, et al.Evaluation of electrochemical performance and redox activity of Fe in Ti doped layered P2-Na0.67Mn0.5Fe0.5O2 cathode for sodium ion batteries[J]. Electrochimica Acta, 2021, 380: 138156.

    [23] [23] ALTIN S, ALTUNDAG S, ALTIN E, et al. An investigation of Ti-substitution effects of Na0.67Mn0.5Fe0.5O2 battery cells for structural and electrochemical properties[J]. Intern J Energy Res, 2020, 44(14):11794–11806.

    [24] [24] SUI Y L, HAO Y Y, ZHANG X P, et al. Improved electrochemical properties of vanadium substituted Na0.67Fe0.5Mn0.5O2 cathode material for sodium-ion batteries[J]. Ceram Int, 2020, 47(4): 5227–5234.

    [25] [25] ZHOU D M, HUANG W X, LV X, et al. A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries[J]. J Power Sources, 2019, 421: 147–155.

    [26] [26] DUFFORT V, TALAIE E, BLACK R, et al. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions[J]. Chem Mater,2015, 27(7): 2515–2524.

    [27] [27] ZHENG S Y, ZHONG G M, MCDONALD M J, et al. Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries[J]. J Mater Chem A, 2016,4(23): 9054–9062.

    [28] [28] XU J, LEE D H, CLEMENT R J, et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0 <x,y,z< 1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chem Mater,2014, 26(2): 1260–1269.

    [29] [29] MARINO C, MARELLI E, VILLEVIEILLE C. Impact of cobalt content in Na0.67MnxFeyCozO2 (x+y+z=1), a cathode material for sodium ion batteries[J]. RSC Adv, 2017, 7(23): 13851–13857.

    [30] [30] VEERASUBRAMANI G K, SUBRAMANIAN Y, PARK M S, et al.Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode[J].Electrochim Acta, 2019, 296: 1027–1034.

    [31] [31] ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries[J]. Energy Environ Sci, 2017, 10(5):1051–1074.

    [32] [32] XU Z X, YANG J, ZHANG T, et al. Stable Na metal an-ode enabled by a reinforced multistructural SEI layer[J]. Adv Funct Mater, 2019,29(27): 1901924.

    [33] [33] JIANG R, HONG L, LIU Y C, et al. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery[J]. Energy Stor Mater, 2021, 42: 370–379.

    Tools

    Get Citation

    Copy Citation Text

    HOU Xianglong, FENG Xuyong, XU Yijian, WU Chenhua, MA Jian, YE Peng, XIANG Hongfa. Na0.67Fe0.5Mn0.5O2 Cathode Material for Sodium Ion Battery with Modified Waste LiCoO2[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 16

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 13, 2021

    Accepted: --

    Published Online: Nov. 14, 2022

    The Author Email: Xianglong HOU (728987021@qq.com)

    DOI:10.14062/j.issn.0454-5648.20210682

    Topics