Infrared and Laser Engineering, Volume. 51, Issue 6, 20210547(2022)

A video anomaly detection method based on deep autoencoding Gaussian mixture model

Youkun Zhong1 and Haining Mo2、*
Author Affiliations
  • 1Physics and Mechanical & Electrical Engineering School, Hechi University, Yizhou 546300, China
  • 2HTC VIVEDU School of Technology, Guangxi University of Science and Technology, Liuzhou 545006, China
  • show less
    Figures & Tables(5)
    Flow chart of abnormal event detection method based on DAGMM
    Examples of the detection results
    • Table 1. Overview of benchmark datasets

      View table
      View in Article

      Table 1. Overview of benchmark datasets

      AttributesUCSD Ped2ShanghaiTech
      Frames4560317398
      SceneSingleMulti
      LabelsSpatial & TemporalSpatial & Temporal
      Resolution360×240856×480
      AnomaliesBiker, cart, etcChasing, brawling sudden motion, etc
    • Table 2. Comparison with the state of the art methods in terms of AUC%

      View table
      View in Article

      Table 2. Comparison with the state of the art methods in terms of AUC%

      MethodUCSD Ped2ShanghaiTech
      MPPCA[3]69.3%-
      MDT[4]82.9%-
      MT-FRCN[5]92.2%-
      Conv2D-AE[10]85.0%60.9%
      Conv3D-AE[10]91.2%-
      ConvLSTM-AE[20]88.1%-
      StackRNN[21]92.2%68.0%
      Baseline[18]95.4%72.8%
      Proposed method95.7%72.9%
    • Table 3. Influence of the number of Gaussian mixture components number K on the experimental results of the UCSD Ped2 data set (frame-level AUC%)

      View table
      View in Article

      Table 3. Influence of the number of Gaussian mixture components number K on the experimental results of the UCSD Ped2 data set (frame-level AUC%)

      $ K $AUC%
      292.3%
      494.5%
      8951%
      1695.7%
      3295.6%
      6495.7%
    Tools

    Get Citation

    Copy Citation Text

    Youkun Zhong, Haining Mo. A video anomaly detection method based on deep autoencoding Gaussian mixture model[J]. Infrared and Laser Engineering, 2022, 51(6): 20210547

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Photoelectric measurement

    Received: Aug. 7, 2021

    Accepted: --

    Published Online: Dec. 20, 2022

    The Author Email: Mo Haining (sunny_cj@21cn.com)

    DOI:10.3788/IRLA20210547

    Topics