Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2815(2024)

Research Progress in Polymer-Derived Ceramic Sensors for Extreme Environments

ZHANG Linjiao... HUA Junsen, MA Chao*, HAN Daoyang, FAN Bingbing, LU Hongxia, XU Hongliang, WANG Hailong, ZHANG Rui and SHAO Gang |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(47)

    [1] [1] COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. J Am Ceram Soc, 2010, 93(7): 1805–1837.

    [2] [2] REN Z K, MUJIB S B, SINGH G. High-temperature properties and applications of Si-based polymer-derived ceramics: A review[J]. Materials, 2021, 14(3): 614.

    [3] [3] WANG L Q, ZHU R, LI G Z. Temperature and strain compensation for flexible sensors based on thermosensation[J]. ACS Appl Mater Interfaces, 2020, 12(1): 1953–1961.

    [4] [4] NAGAIAH N R, KAPAT J S, AN L, et al. Novel polymer derived ceramic-high temperature heat flux sensor for gas turbine environment[J]. J Phys: Conf Ser, 2006, 34: 458–463.

    [5] [5] GREGORI G, KLEEBE H J, BREQUEL H, et al. Microstructure evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000 and 1400 ℃[J]. J Non Cryst Solids, 2005, 351(16/17): 1393–1402.

    [6] [6] VIARD A, FONBLANC D, LOPEZ-FERBER D, et al. Polymer derived Si—B—C—N ceramics: 30 years of research[J]. Adv Eng Mater, 2018, 20(10): 1800360.

    [7] [7] WEN Q B, YU Z J, RIEDEL R. The fate and role of in situ formed carbon in polymer-derived ceramics[J]. Prog Mater Sci, 2020, 109: 100623.

    [9] [9] YU Y X, HUANG Q F, RHODES S, et al. SiCNO–GO composites with the negative temperature coefficient of resistance for high- temperature sensor applications[J]. J Am Ceram Soc, 2017, 100(2): 592–601.

    [10] [10] SHAO G, JIANG J P, JIANG M J, et al. Polymer-derived SiBCN ceramic pressure sensor with excellent sensing performance[J]. J Adv Ceram, 2020, 9(3): 374–379.

    [11] [11] RIEDEL R, RUSWISCH L M, AN L N, et al. Amorphous silicoboron carbonitride ceramic with very high viscosity at temperatures above 1500℃[J]. J Am Ceram Soc, 1998, 81(12): 3341–3344.

    [12] [12] WANG Y G, FAN Y, ZHANG L G, et al. Polymer-derived SiAlCN ceramics resist oxidation at 1400℃[J]. Scr Mater, 2006, 55(4): 295–297.

    [13] [13] ZHAO R, SHAO G, CAO Y J, et al. Temperature sensor made of polymer-derived ceramics for high-temperature applications[J]. Sens Actuat A Phys, 2014, 219: 58–64.

    [14] [14] LIU Y P, LIEW L A, LUO R L, et al. Application of microforging to SiCN MEMS fabrication[J]. Sens Actuat A Phys, 2002, 95(2–3): 143–151.

    [15] [15] CUI Z F, CHEN X J, LI X, et al. Thin-film temperature sensor made from polymer-derived ceramics based on laser pyrolysis[J]. Sens Actuat A Phys, 2023, 350: 114144.

    [16] [16] SHAO P F, MA C, HAN D Y, et al. Temperature-sensing performance of polymer-derived SiAlCN ceramics up to 1000℃[J]. Ceram Int, 2022, 48(17): 25277–25283.

    [17] [17] YAN Q, CHEN S Y, SHI H F, et al. Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance[J]. J Eur Ceram Soc, 2023, 43(16): 7373–7380.

    [18] [18] CHEN Q N, ZHANG P, LIU K, et al. Polymer-derived ceramic thin-film thermocouples for high temperature measurements[J]. Ceram Int, 2023, 49(19): 31248–31254.

    [19] [19] LI Y, YU Y X, SAN H S, et al. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J]. Appl Phys Lett, 2013, 103(16): 163505.

    [20] [20] FRIEDT J M, BOUDOT R, MARTIN G, et al. Probing a dielectric resonator acting as passive sensor through a wireless microwave link[J]. Rev Sci Instrum, 2014, 85(9): 094704.

    [21] [21] QIN L, SHEN D D, WEI T Y, et al. A wireless passive LC resonant sensor based on LTCC under high-temperature/pressure environments[J]. Sensors, 2015, 15(7): 16729–16739.

    [22] [22] TAN Q L, LUO T, XIONG J J, et al. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology[J]. Sensors, 2014, 14(3): 4154–4166.

    [23] [23] CHENG H T, EBADI S, GONG X. A low-profile wireless passive temperature sensor using resonator/antenna integration up to 1000 ℃[J]. IEEE Anntenas Wirel Propag Lett, 2012, 11: 369–372.

    [24] [24] REN X H, EBADI S, CHEN Y H, et al. High-temperature characterization of SiCN ceramics for wireless passive sensing applications up to 500℃[C]//WAMICON 2011 Conference Proceedings. Clearwater Beach, FL, USA. IEEE, 2011: 1–5.

    [25] [25] YU Y X, HUANG Q F, XIA F S, et al. Effect of pyrolysis temperature on resonant frequency of PDC-SiBCN ceramic based wireless passive temperature sensors[J]. J Chin Ceram Soc, 2016, 3(4): 192–198.

    [27] [27] DANIEL J, NGUYEN S, CHOWDHURY M A R, et al. Temperature and pressure wireless ceramic sensor (distance = 0.5 meter) for extreme environment applications[J]. Sensors, 2021, 21(19): 6648.

    [28] [28] YU Y X, HAN B, XIA F S. PDC-SiAlCN ceramic based wireless passive temperature sensors using integrated resonator/antenna up to 1100℃[J]. Sens Rev, 2020, 40(1): 62–70.

    [30] [30] YU Y X, XU W L, XU J, et al. Conductivity of SiCNO–BN composite ceramics and their application in wireless passive temperature sensor[J]. Ceram Int, 2021, 47(10): 14490–14497.

    [31] [31] WANG B, WU G Z, GUO T, et al. Alumina ceramic based high-temperature performance of wireless passive pressure sensor[J]. Photonic Sens, 2016, 6(4): 328–332.

    [32] [32] TAN Q L, REN Z, CAI T, et al. Wireless passive temperature sensor realized on multilayer HTCC tapes for harsh environment[J]. J Sens, 2015, 2015: 124058.

    [33] [33] WENG H T, DUAN F L, ZHANG Y F, et al. High temperature SAW sensors on LiNbO3 substrate with SiO2 passivation layer[J]. IEEE Sens J, 2019, 19(24): 11814–11818.

    [34] [34] WENG H T, DUAN F L, XIE Z Y, et al. LiNbO3-based SAW sensors capable to measure up to 1100℃ high temperature[J]. IEEE Sens J, 2020, 20(21): 12679–12683.

    [35] [35] YAN D, YANG Y, HONG Y P, et al. AlN-based ceramic patch antenna-type wireless passive high-temperature sensor[J]. Micromachines, 2017, 8(10): 301.CHENG H T, REN X H, EBADI S, et al. Wireless passive temperature sensors using integrated cylindrical resonator/antenna for harsh-environment applications[J]. IEEE Sens J, 2015, 15(3): 1453–1462.

    [36] [36] CHENG H T, REN X H, EBADI S, et al. Wireless passive temperature sensors using integrated cylindrical resonator/antenna for harsh- environment applications[J]. IEEE Sens J, 2015, 15(3): 1453–1462.

    [37] [37] TERAUDS K, SANCHEZ-JIMENEZ P E, RAJ R, et al. Giant piezoresistivity of polymer-derived ceramics at high temperatures[J]. J Eur Ceram Soc, 2010, 30(11): 2203–2207.

    [38] [38] CAO Y J, YANG X P, ZHAO R, et al. Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics[J]. J Mater Sci, 2016, 51(12): 5646–5650.

    [39] [39] LI N, CAO Y J, ZHAO R, et al. Polymer-derived SiAlOC ceramic pressure sensor with potential for high-temperature application[J]. Sens Actuat A Phys, 2017, 263: 174–178.

    [40] [40] CHENG H T, SHAO G, EBADI S, et al. Evanescent-mode- resonator-based and antenna-integrated wireless passive pressure sensors for harsh-environment applications[J]. Sens Actuat A Phys, 2014, 220: 22–33.

    [41] [41] YU Y X, LIU Y X, ZHANG Z H, et al. Fabrication of high-fracture-strength and gas-tightness PDC films via PIP process for pressure sensor application[J]. J Am Ceram Soc, 2020, 103(6): 3541–3551.

    [42] [42] YU Y X, HUANG C H, XU J, et al. Effect of the graphitization level of the free carbon on the temperature sensitivity of silicon carbonitride-based pressure sensors[J]. J Am Ceram Soc, 2021, 104(10): 5067–5076.

    [43] [43] YU Y X, DOU W H, XU J, et al. Fabrication of high gas-tightness SiCN ceramic via PIP process for increasing sensing distance of pressure sensor[J]. Ceram Int, 2020, 46(2): 2155–2162.

    [44] [44] OKOJIE R S, LUKCO D, NGUYEN V, et al. 4H-SiC piezoresistive pressure sensors at 800 ℃ with observed sensitivity recovery[J]. IEEE Electron Device Lett, 2015, 36(2): 174–176.

    [45] [45] YANG J. A harsh environment wireless pressure sensing solution utilizing high temperature electronics[J]. Sensors, 2013, 13(3): 2719–2734.

    [46] [46] XU L D, CUI Z F, LI L L, et al. In situ laser fabrication of polymer-derived ceramic composite thin-film sensors for harsh environments[J]. ACS Appl Mater Interfaces, 2022, 14(10): 12652–12661.

    [47] [47] WU C, LIN F, PAN X C, et al. Temperature-insensitive conductive composites for noninterference strain sensing[J]. Chem Eng J, 2023, 457: 141269.

    [48] [48] ZENG Y J, CHEN G C, ZHAO F X, et al. Metal-based sandwich type thick-film platinum resistance temperature detector for in situ temperature monitoring of hot-end components[J]. Appl Surf Sci, 2023, 637: 157979.

    [49] [49] ZENG Y J, CHEN G C, WU C, et al. Thin-film platinum resistance temperature detector with a SiCN/yttria-stabilized zirconia protective layer by direct ink writing for high-temperature applications[J]. ACS Appl Mater Interfaces, 2023, 15(1): 2172–2182.

    [50] [50] CHEN G C, ZENG Y J, ZHAO F X, et al. Conformal fabrication of functional polymer-derived ceramics thin films[J]. Surf Coat Technol, 2023, 464: 129536.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Linjiao, HUA Junsen, MA Chao, HAN Daoyang, FAN Bingbing, LU Hongxia, XU Hongliang, WANG Hailong, ZHANG Rui, SHAO Gang. Research Progress in Polymer-Derived Ceramic Sensors for Extreme Environments[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2815

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 27, 2024

    Accepted: --

    Published Online: Nov. 8, 2024

    The Author Email: Chao MA (chaoma@zzu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240149

    Topics