Journal of Synthetic Crystals, Volume. 49, Issue 10, 1807(2020)

Comparative Study of Cu2ZnSnSe4 Thin Films Solar Cells Fabricated by Sputtering Selenide Targets and Metal Element Targets

LI Xiang1, WANG Shurong1,2, LIAO Hua1, YANG Shuai1, LI Xinyu1, WANG Tingbao1, LI Jingjin1, LI Qiulian1, and LIU Xin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] Solar frontier press release. Solar frontier achieves world record thin-film solar cell effiiciency of 23.35%[EB/OL].(2019-01-17). http://www.solar-frontier.com/eng/news/2019/0117_press.html.

    [2] [2] Katagiri H, Jimbo K, Maw W S, et al. Development of CZTS-based thin film solar cells[J]. Thin Solid Films, 2009, 517(7): 2455-2460.

    [3] [3] Chang Y, Jialiang H, Kaiwen S, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018(3): 764-772.

    [4] [4] Repins I, Beall C, Vora N, et al. Co-evaporated Cu2ZnSnSe4 films and devices[J]. Solar Energy Materials & Solar Cells, 2012, 101: 154-159.

    [5] [5] Vanalakar S A, Agawane G L, Shin S W. et al. A review on pulsed laser deposited CZTS thin films for solar cell applications[J]. Journal of Alloys & Compounds, 2015, 619: 109-121.

    [6] [6] Fu J, Tian Q W, Zhou Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials, 2016, 28: 5821-5828.

    [7] [7] Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.

    [8] [8] Adelifard M, Torkamani R. Spray deposited Cu2ZnSnS4 nanostructured absorber layer a promising candidate for solar cell applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(6): 3700-3706.

    [9] [9] Chen S, Walsh A, Yang J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells[J]. Physical Review B Condensed Matter, 2011, 83(12): 113-115.

    [10] [10] Wibowo R A, Kim W S, Lee E S, et al. Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets[J]. Journal of Physics and Chemistry of Solids, 2007, 68(10): 1908-1913.

    [11] [11] Zoppi G, Forbes I, Miles R W, et al. Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(5): 315-319.

    [12] [12] Wooseok K, Hugh W H. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent[J]. Advanced Energy Materials, 2011, 1: 732-735.

    [13] [13] Yun S L, Gershon T, Gunawan O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length[J]. Advanced Energy Materials, 2015, 5(7): 1401372.

    [14] [14] Yao L, Ao J, Jeng M J, et al. A CZTSe solar cell with 8.2% power conversion efficiency fabricated using electrodeposited Cu/Sn/Zn precursor and a three-step selenization process at low Se pressure[J]. Solar Energy Materials and Solar Cells, 2017, 159: 318-324.

    [15] [15] Taskesen T, Neerken J, Schoneberg J, et al. Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors[J]. Advanced Energy Materials, 2018, 8(16): 1703295.1-1703295.6.

    [16] [16] Zhang Z J, Gao Q, Guo J J, et al. Over 10% efficient pure CZTSe solar cell fabricated by electrodeposition with Ge doping[J]. Solar RRL,2020, 4(5): 2000059.

    [18] [18] Li J, Kim S Y, Nam D, et al. Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 159: 447-455.

    [19] [19] Stefan G H, Matthias D, Melanie W, et al. 11.2% efficient solution processed kesterite solar cell with a low voltage deficit[J]. Advanced Energy Materials, 2015, 5(18): 1500712.

    [20] [20] Kim S Y, Son D H, Kim Y I, et al. Void and secondary phase formation mechanisms of CZTSSe using Sn/Cu/Zn/Mo stacked elemental precursors[J]. Nano Energy, 2019, 59: 399-411.

    [21] [21] Djemour R, Mousel M, Redinger A, et al. Detecting ZnSe secondary phase in Cu2ZnSnSe4 by room temperature photoluminescence[J]. Applied Physics Letters, 2013, 102(22): 222108.

    [22] [22] Just J, Sutter-Fella C M, Lützenkirchen-Hecht, et al. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films[J]. Phys Chem Chem Phys,2016:10.1039.C6CP00178E.

    [23] [23] Hwang D K, Ko B S, Jeon D H, et al. Single-step sulfo-selenization method for achieving low open circuit voltage deficit with band gap front-graded Cu2ZnSn(S,Se)4 thin films[J]. Solar Energy Materials and Solar Cells, 2017, 161: 162-169.

    [24] [24] Li X, Zhuang D, Zhang N, et al. Achieving 11.95% efficient Cu2ZnSnSe4 solar cells fabricated by sputtering a Cu-Zn-Sn-Se quaternary compound target with a selenization process[J]. Journal of Materials Chemistry A, 2019, 7(16): 9948-9957.

    [25] [25] Wei Y, Zhuang D, Zhao M, et al. An investigation on phase transition for as-sputtered Cu2ZnSnSe4 absorbers during selenization[J]. Solar Energy, 2018, 164(APR.): 58-64.

    Tools

    Get Citation

    Copy Citation Text

    LI Xiang, WANG Shurong, LIAO Hua, YANG Shuai, LI Xinyu, WANG Tingbao, LI Jingjin, LI Qiulian, LIU Xin. Comparative Study of Cu2ZnSnSe4 Thin Films Solar Cells Fabricated by Sputtering Selenide Targets and Metal Element Targets[J]. Journal of Synthetic Crystals, 2020, 49(10): 1807

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 9, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics