Infrared and Laser Engineering, Volume. 45, Issue 9, 902001(2016)

High sensitivity photon polarization laser radar system

Zhao Yuan1, Zhang Zijing1, Ma Kun1, Xu Lu1, Lv Hua2, and Su Jianzhong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] Schildknecht T, Musci R, Ploner M, et al. Optical observation of space debris in the geostationary ring[C]//Space Debris, 2001, 473: 89-93.

    [2] [2] Schildknecht T, Musci R, Ploner M, et al. Optical observations of space debris in GEO and in highly-eccentric orbits[J]. Advances in Space Research, 2004, 34(5): 901-911.

    [3] [3] Kirchner G, Koidl F, Friederich F, et al. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51(1): 21-24.

    [4] [4] Wang Weibing, Wang Tingfeng, Guo Jin. Research on orbit determination technology for space target based on method of tracking with double satellites and double cameras[J]. Acta Optica Sinica, 2014, 35(1): 112006. (in Chinese)

    [5] [5] Jiang Tiezhen, Xiao Wenshu, Li Dasheng, et al. Feasibility study on passive-radar detection of space targets using spaceborne illuminators of opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. (in Chinese)

    [6] [6] Zhu Jiang, Liao Guisheng, Zhu Shengqi. Space group debris imaging based on block-sparse method[J]. Journal of Electronics & Information Technology, 2015, 37(3): 587-593. (in Chinese)

    [7] [7] Li Yuqiang, Li Rongwang, Li Zhulian, et al. Application research on space debris laser ranging[J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)

    [8] [8] Prochazka I, Kodet J, Blazej J, et al. Photon counting detector for space debris laser tracking and lunar laser ranging[J]. Advances in Space Research, 2014, 54(4): 755-758.

    [9] [9] DaneshPanah M, Javidi B, Watson E A. Three dimensional object recognition with photon countingimagery in the presence of noise[J]. Opt Express, 2010, 18(25): 26450-26460.

    [10] [10] Aull B F, Loomis A H, Young D J, et al. Geigermode avalanche photodiodes for three-dimensional imaging[J]. Lincoln Lab J, 2002, 13(2): 335-350.

    [11] [11] Krichel N J, McCarthy A, Buller G S. Resolving range ambiguity in a photon counting depth imageroperating at kilometer distances[J]. Opt Express, 2010, 18(9): 9192-9206.

    [12] [12] Massa J S, Wallace A M, Buller G S, et al. Laser depth measurement based ontime-correlated single-photon counting[J]. Opt Lett, 1997, 22(8): 543-545.

    [13] [13] Yuan P, Sudharsanan R, Bai X G, et al. 32×32 Geiger-mode LADAR cameras[C]//SPIE, 2010, 7684: 76840C.

    [14] [14] Fouche D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors[J]. Applied Optics, 2003, 42(27): 5388-5398.

    [15] [15] Hayman M, Thayer J P. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices[J]. JOSA A, 2012, 29(4): 400-409.

    CLP Journals

    [1] Wang Haiwei, Ding Yuxing, Huang Genghua, Hou Jia, Shu Rong. Research on the long-range and compact photon counting ladar system under sunlight condition[J]. Infrared and Laser Engineering, 2019, 48(1): 106005

    [2] Tian Jing, Bai Guangfu, Jiang Yang. Research of scattering Stokes parameters for ship wake bubbles[J]. Infrared and Laser Engineering, 2018, 47(2): 206003

    Tools

    Get Citation

    Copy Citation Text

    Zhao Yuan, Zhang Zijing, Ma Kun, Xu Lu, Lv Hua, Su Jianzhong. High sensitivity photon polarization laser radar system[J]. Infrared and Laser Engineering, 2016, 45(9): 902001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 19, 2016

    Accepted: Feb. 23, 2016

    Published Online: Nov. 14, 2016

    The Author Email:

    DOI:10.3788/irla201645.0902001

    Topics